ECE 209 — Exam # 2

Estimated time for completion: <1.25 hour 24 October 2017

Rules of the Exam

- Rule 1: The examination period begins at 9:30am on Tuesday 24 October 2017 and ends at 10:45pm on Tuesday 24 October 2017.
- Rule 2: There are four problems.
- Rule 3: The exam is closed book and closed notes. You may have an 8.5" x 11" sheet of paper with notes and a calculator.
- Rule 4: Do not leave the room until you have completed the exam.
- Rule 5: To receive full credit for an answer include the units along with the numerical answer.
- Rule 6: Show all work answers without supporting work will not receive credit.

Answer Key
Name

Problem 1 (30 points)

Consider the circuit below:

Part A: Draw the Thévenin Equivalent Circuit with respect to terminals A and B.

Supermesh:
$$4\lambda_{1} + 9\lambda_{2} + 6\lambda_{2} - 90 + \lambda_{1} - 20 = 0$$

$$(\lambda_{1} - \lambda_{2} = 6 = 7) \lambda_{1} = 6 + \lambda_{2}$$

$$5\lambda_{1} + 15\lambda_{2} = 110$$

$$30 + 5\lambda_{2} + 15\lambda_{2} = 110$$

$$20\lambda_{2} = 80$$

$$4.2\pi$$

$$\lambda_{2} = 4A$$

$$V_{AB} = 6\lambda_{2} = 24V$$

242

RAB= 6/1/4

Z 4,21

Part B: If a load resistor \mathcal{R}_L is placed between terminals A and B:

What value of R_L produces maximum power transfer to the load?

What is the maximum power dissipated by R_L ? 34.3 W

Problem 2 (20 points)

Consider the circuit below:

Draw the Thévenin Equivalent Circuit with respect to terminals Λ and B.

$$V_2 = -3.8 \text{ V}$$

$$|CL| = V_{2};$$

$$\frac{V_{2}}{V_{1}} + \frac{V_{2} + V_{1}}{2}$$

$$+ \frac{V_{2} - 1}{5} = 0$$

$$V_{2} = \frac{-36}{19}$$

$$V_{1} - V_{2}$$

$$= \frac{30}{19} A$$

$$R_{Th} = 0.63$$

Problem 3 (20 points)

The OpAmp in the circuits below is ideal. For each of the circuits, find the voltage gain, V_o / V_{i-}

Circuit (b) Voltage Gain = $\frac{-20}{}$

Circuit (c) Voltage Gain = _____

Circuit (d) Voltage Gain =

Problem 4 (30 points)

Consider the circuits below:

(A)

$$30/120 = 12$$

$$12 + 12 + 6 = 30$$

$$30/130 = 15$$

$$15 + 15 + 15$$