ECE 209 — Exam # 1

Estimated time for completion: <1.25 hour 28 September 2017

Rules of the Exam

Rule 1: The examination period begins at 9:30am on Thursday 28 September 2017 and ends at 10:45pm on Thursday 28 September 2017.

Rule 2: There are four problems.

Rule 3: The exam is closed book and closed notes. You may have an 8.5" x 11" sheet of paper with notes and a calculator.

Rule 4: To receive full credit for an answer include the units along with the numerical answer.

Rule 5: Show all work - answers without supporting work will not receive credit.

Answer Key

Problem 1 (20 points)

Two electric circuits, represented by boxes A and B, are connected as shown in the figure below. The reference direction for the current i and the reference polarity of the voltage v are also shown.

For each set of values of i and v in the table below, calculate the value of the power associated with circuit A and circuit B.

			P=-Nxi	P=Nxi
Condition	i	υ	Power for Circuit A	Power for Circuit B
1	-10 A	5 V	50 W	-sow
2	5 A	2 V	-10W	10 W
3	12 A	-2 V	24W	-24W

Problem 2 (20 points)

Consider the circuit below:

Is the interconnection valid (yes (no)?)_____

If the interconnection is valid, identify the voltage and current sources that generate power by circling them in the figure above.

If the circuit is not valid, explain why:

Problem 3 (30 points)

Consider the three series and parallel resistor combinations below:

For circuits (A), (B), and (C) calculate R_{ab} , the equivalent resistance between terminals A and B:

$$R_{ab}$$
 for circuit (A): 21Λ
 R_{ab} for circuit (B): 42Λ
 R_{ab} for circuit (C): 20Λ

Problem 4 (30 points)

In the circuit shown below, calculate the power associated with each circuit component, the total power generated and the total power dissipated (or absorbed).

Power associated with the 50 V independent source? 37.5w

Power associated with the -4 A independent source? - 320W

Power associated with the $10i_x$ dependent voltage source? 6 4 W

Power associated with the 40Ω resistor? 62.5 W

Power associated with the 5Ω resistor? 20 W

Power associated with the 50Ω resistor? 72W

Power associated with the 100Ω resistor? 64 W

How much power is generated in the circuit? 320 W

How much power is dissipated or absorbed in the circuit? 320 W

Salve
$$V_1 = 60V$$

 $V_2 = 80V$
 $A_X = 2A$

Mesh Analysis

$$40(1,-1,1)-50=0$$
 $5i_2+50(i_2-i_3)$
 $+40(1,2-1,1)=0$
 $-10i_x+100(i_3+4)$
 $+50(i_3-i_2)=0$
 $(x=-1,2)$
 $($

(Blank Page)

(Blank Page)