ECE 209 — Exam # 3

Estimated time for completion: <75 minutes 22 November 2016

<u>Rules of the Exam</u>

Rule 1: The examination period begins at 11:00pm on Tuesday 24 November 2015 and ends at 12:15pm on Tuesday 24 November 2015.

Rule 2: There are three problems.

Rule 3: Show all work and state all assumptions. Make sure to include the units along with a numerical answer. Answers without support when needed will not receive credit.

Rule 4: The exam is closed book and closed notes. You may have an 8.5" x 11" sheet of paper with notes. You may use a calculator.

Happy Thanksgiving!

Problem 1 (20 points)

In the circuit below, the switch has been closed for a very long time and opens at t = 0. There is no energy stored in the circuit at the time the switch opens.

What is $i_2(0^-)$ ______

```
What is i_2(0^+) ______
```

What is the differential equation that describes the behavior of $i_2(t)$ for $t \ge 0$? (Note: you do not need to solve the equation.)

Problem 2 (40 points)

In the circuit below, the switch has been open for a very long time and closes at t = 0.

What is the time constant of the circuit for t > 0?

	$t = 0^-$	$t = 0^+$	t = 4 ms	$\mathbf{t} = \infty$
i_1				
i_2				
i_3				
v_C				

Complete the table below:

Problem 3 (40 points)

Part A. For the circuit below the voltage source $v_s(t) = 150 \cos(2513t - 55^\circ)$ V

What is the peak voltage across the resistor?

What is $v_S(4\text{ms})$?

What is $i_S(4\text{ms})$?

What is the frequency of $V_R(t)$ in Hz?

What is the average power dissipated by the resistor?

Part B. What is the Phasor representation of the following time-domain signals?

 $v(t) = 120\cos(360t - 37^{\circ}) \text{ mV}$

 $i(t) = 75\sin(450t + 40^\circ)$ A

Part C. What is the time-domain representation of the following Phasor signals when the frequency is 3 MHz?

 $\mathbf{I}=0.3\ \angle 15^\circ\ \mathbf{A}$

Part D. Convert the circuit below on the left to the frequency domain when the frequency is 2.5 kHz.

At what radian frequency, ω , is the impedance Z_{AB} purely resistive?

Name: _____

Name: _____