ECE 209 - Exam \# 3

Estimated time for completion: <75 minutes
22 November 2016

Rules of the Exam

Rule 1: The examination period begins at 11:00pm on Tuesday 24 November 2015 and ends at 12:15pm on Tuesday 24 November 2015.

Rule 2: There are three problems.
Rule 3: Show all work and state all assumptions. Make sure to include the units along with a numerical answer. Answers without support when needed will not receive credit.

Rule 4: The exam is closed book and closed notes. You may have an 8.5 " x 11 " sheet of paper with notes. You may use a calculator.

Happy Thanksgiving!

Problem 1 (20 points)
In the circuit below, the switch has been closed for a very long time and opens at $t=0$. There is no energy stored in the circuit at the time the switch opens.

What is $i_{2}\left(0^{-}\right)$ \qquad

What is $i_{2}\left(0^{+}\right)$ \qquad

What is the differential equation that describes the behavior of $i_{2}(t)$ for $t \geq 0$? (Note: you do not need to solve the equation.)

Problem 2 (40 points)
In the circuit below, the switch has been open for a very long time and closes at $t=0$.

What is the time constant of the circuit for $t>0$? \qquad

Complete the table below:

	$\mathbf{t}=\mathbf{0}^{-}$	$\mathbf{t}=\mathbf{0}^{+}$	$\mathbf{t}=\mathbf{4} \mathbf{~ m s}$	$\mathbf{t}=\infty$
i_{1}				
i_{2}				
i_{3}				
v_{C}				

Problem 3 (40 points)
Part A. For the circuit below the voltage source $v_{s}(t)=150 \cos \left(2513 t-55^{\circ}\right) \mathrm{V}$

What is the peak voltage across the resistor? \qquad

What is $v_{S}(4 \mathrm{~ms}) ?$ \qquad

What is $i_{S}(4 \mathrm{~ms})$? \qquad

What is the frequency of $V_{R}(t)$ in Hz ? \qquad

What is the average power dissipated by the \qquad resistor?

Part B. What is the Phasor representation of the following time-domain signals?

$$
\begin{aligned}
& v(t)=120 \cos \left(360 t-37^{\circ}\right) \mathrm{mV} \\
& i(t)=75 \sin \left(450 t+40^{\circ}\right) \mathrm{A}
\end{aligned}
$$

\qquad
\qquad

Part C. What is the time-domain representation of the following Phasor signals when the frequency is 3 MHz ?

$$
\mathbf{V}=25 \angle-50^{\circ} \mathrm{V}
$$

$$
\mathbf{I}=0.3 \angle 15^{\circ} \mathrm{A}
$$

Part D. Convert the circuit below on the left to the frequency domain when the frequency is 2.5 kHz .

At what radian frequency, ω, is the impedance $Z_{A B}$ purely resistive? \qquad

Name:

Name:

