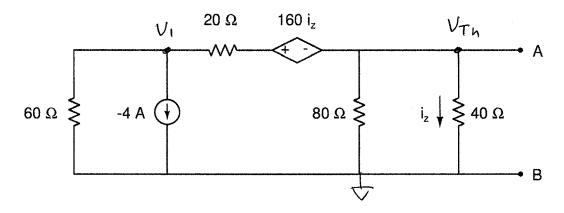
ECE 209 — Exam # 2

Estimated time for completion: <75 minutes 27 October 2016


Rules of the Exam

- Rule 1: The examination period begins at 11:00am on Thursday 27 October 2016 and ends at 12:15pm on Thursday 27 October 2016.
- Rule 2: There are four problems.
- Rule 3: Show all work and state all assumptions. Make sure to include the units along with the numerical answer.
- Rule 4: The exam is closed book and closed notes. You may have an 8.5" x 11" sheet of paper with notes. You may use a calculator.

Answer Key
Name

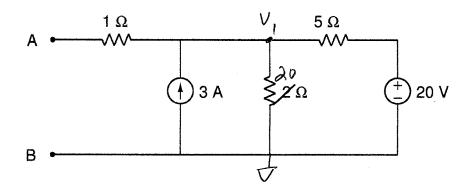
Problem 1 (20 points)

Consider the circuit below:

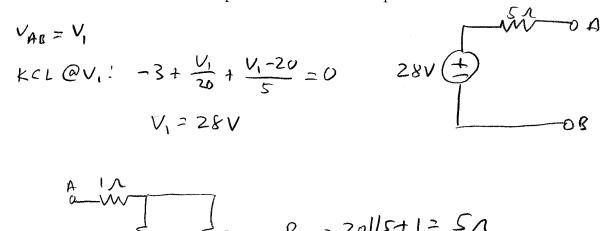
Draw the Thévenin Equivalent Circuit with respect to terminals A and B.

KCL @V₁:
$$\frac{V_1}{60} - 4 + \frac{V_1 - V_{Th} - 160 \hat{L}_2}{2v} = 0$$

KCL @V₂: $\frac{V_{Th}}{4v} + \frac{V_{Th}}{8v} + \frac{V_{Th} + 160 \hat{L}_2 - V_1}{2o} = 0$


Constraint: $\hat{L}_2 = \frac{V_{Th}}{4v}$

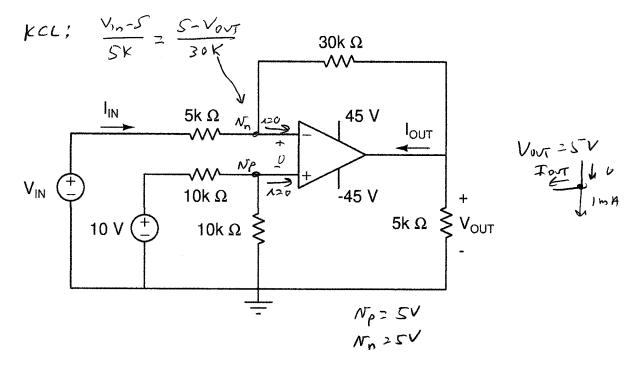
Solve: $V_{Th} = 30V$


Thévenin Equivalent Circuit

Problem 2 (30 points)

Consider the circuit below:

Part A: Draw the Thévenin Equivalent Circuit with respect to terminals A and B.



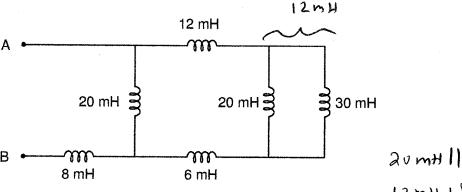
Part B: If a load resistor R_L is placed between terminals A and B:

What value of R_L produces maximum power transfer to the load? $R_L = 5 \Lambda$ What is the maximum power dissipated by R_L ? $P = \frac{(28)^2}{4R_L} = 39.2 \text{ W}$

Problem 3 (20 points)

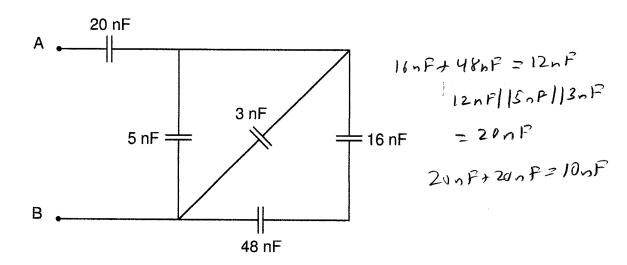
Consider the ideal Op Amp circuit below:

Derive an expression relating V_{OUT} as a function of V_{In} : $V_{ovt} = 35-6 V_{in}$


When
$$V_{\rm IN}=5$$
 V, what is the current $I_{\rm IN}$? $\frac{V_{\rm IN}-S}{SK}=\frac{S-S}{5K}=0$ A $V_{\rm OM}=SV$ When $V_{\rm IN}=5$ V, what is the current $I_{\rm OUT}$? $\frac{T_{\rm OV}+S-T_{\rm IM}A}{S_{\rm OM}}+0$ + $T_{\rm IM}>0$

Complete the table below:

$V_{ m In}$	$V_{ m Out.}$	
-4 V	45	2 saturation
-2 V	45	Sandallan
0 V	35	
2 V	23	
4 V	11	


Problem 4 (30 points)

Consider the circuits below:

20mH 1 30mH = 12mH

What is the equivalent capacitance between terminals A and B?

What is the equivalent inductance between terminals A and B? $\frac{10 \text{ k} \text{ F}}{}$