ECE 209 — Exam # 1

Estimated time for completion: <1.25 hour 29 September 2016

Rules of the Exam

Rule 1: The examination period begins at 11:00am on Thursday 29 September 2016 and ends at 12:15pm on Thursday 29 September 2016.

Rule 2: There are four problems.

Rule 3: The exam is closed book and closed notes. You may have an 8.5" x 11" sheet of paper with notes and a calculator.

Rule 4: To receive full credit for an answer include the units along with the numerical answer.

Rule 5: Show all work - answers without supporting work will not receive credit.

Answer Key

Problem 1 (20 points)

Two electric circuits, represented by boxes **A** and **B**, are connected as shown in the figure below. The reference direction for the current i and the reference polarity of the voltage v are also shown.

For each set of values of i and v in the table below, calculate the absolute value of the power associated with circuit $\mathbf B$ and indicate if circuit $\mathbf B$ is generating or absorbing power.

Condition	i	v	Power	Generating or Absorbing
1	10 A	5 V	50W	Absurbing
2	5 A	-24 V	120W	Generating
3	-12 A	24 V	288 W	Generating
4	-2.5 A	-1 V	2.5W	Absorbing

2 of 6

Problem 2 (20 points)

Consider the circuit below:

Is the interconnection valid (yes/no)? Yes

If the interconnection is valid, identify the voltage and current sources that generate power by circling them in the figure above.

If the circuit is not valid, explain why:

Problem 3 (30 points)

Consider the three series and parallel resistor combinations below:

For circuits (A) and (B), calculate R_{ab} , the equivalent resistance between terminals A and B:

$$R_{ab}$$
 for circuit (A): $S\Lambda$ $15/10/16/16+3$ R_{ab} for circuit (B): 42Λ $75/1150+12$

For circuit (C), calculate the value of R_x that produces an equivalent resistance between terminals A and B of 15 Ω .

 R_x for circuit (C): $\underline{\forall} \Lambda$

Problem 4 (30 points)

In the circuit shown below, calculate the power associated with each circuit component, the total power generated and the total power dissipated (or absorbed).

Power associated with the 5 V independent source? 25 mw

Power associated with the 10 V independent source? 60 mW

Power associated with the $10I_x$ dependent current source? -250 mW

Power associated with the $3k\Omega$ resistor? 75 mW

Power associated with the $5k\Omega$ resistor?

Power associated with the $10k\Omega$ resistor? 10 mW

How much power is generated in the circuit? 20 mw

How much power is dissipated or absorbed in the circuit? 250 mw

Ex = i3

sm: Constraint: iz-i,=10i3

KVL -5+ 5000 ([2-i3)+10+30001,=0

KVL@i3: -10 + 5000 (i3-i2) + 10; 100 i3 =0

3 grations; 3 vaknowns

11, = +5mA

12 = -5mA

13 = -1 mg