ECE 209 - Exam \# 1

Estimated time for completion: <1.25 hour
29 September 2016

Rules of the Exam

Rule 1: The examination period begins at 11:00am on Thursday 29 September 2016 and ends at 12:15pm on Thursday 29 September 2016.

Rule 2: There are four problems.
Rule 3: The exam is closed book and closed notes. You may have an 8.5 " x 11 " sheet of paper with notes and a calculator.

Rule 4: To receive full credit for an answer include the units along with the numerical answer.
Rule 5: Show all work - answers without supporting work will not receive credit.

Name

Problem 1 (20 points)

Two electric circuits, represented by boxes \mathbf{A} and \mathbf{B}, are connected as shown in the figure below. The reference direction for the current i and the reference polarity of the voltage v are also shown.

For each set of values of i and v in the table below, calculate the absolute value of the power associated with circuit \mathbf{B} and indicate if circuit \mathbf{B} is generating or absorbing power.

Condition	i	v	\mid Power \mid	Generating or Absorbing
1	10 A	5 V		
2	5 A	-24 V		
3	-12 A	24 V		
4	-2.5 A	-1 V		

Problem 2 (20 points)

Consider the circuit below:

Is the interconnection valid (yes/no)? \qquad

If the interconnection is valid, identify the voltage and current sources that generate power by circling them in the figure above.

If the circuit is not valid, explain why:

Problem 3 (30 points)

Consider the three series and parallel resistor combinations below:

For circuits (A) and (B), calculate $R_{a b}$, the equivalent resistance between terminals A and B :

$$
\begin{aligned}
& R_{a b} \text { for circuit }(\mathrm{A}): \\
& R_{a b} \text { for circuit }(\mathrm{B}):
\end{aligned}
$$

For circuit (C), calculate the value of R_{x} that produces an equivalent resistance between terminals A and B of 15Ω.

$$
R_{x} \text { for circuit (C): }
$$

\qquad

Problem 4 (30 points)

In the circuit shown below, calculate the power associated with each circuit component, the total power generated and the total power dissipated (or absorbed).

Power associated with the 5 V independent source? \qquad

Power associated with the 10 V independent source? \qquad

Power associated with the $10 I_{x}$ dependent current source? \qquad

Power associated with the $3 \mathrm{k} \Omega$ resistor? \qquad

Power associated with the $5 \mathrm{k} \Omega$ resistor? \qquad

Power associated with the $10 \mathrm{k} \Omega$ resistor? \qquad

How much power is generated in the circuit? \qquad

How much power is dissipated or absorbed in the circuit? \qquad
(Blank Page)

