ECE 209 — Exam # 3

Estimated time for completion: <50 minutes 3 April 2015

<u>Rules of the Exam</u>

Rule 1: The examination period begins at 1:10pm on Friday 3 April 2015 and ends at 2:00pm on Friday 3 April 2015.

Rule 2: There are three problems and one extra-credit problem.

Rule 3: Show all work and state all assumptions. Make sure to include the units along with a numerical answer.

Rule 4: The exam is closed book and closed notes. You may have an 8.5" x 11" sheet of paper with notes. You may use a calculator.

Rule 5: Please put your name on each page of the exam.

Name

Problem 1 (30 points)

What is the equivalent capacitance between terminals A and B? _____

What is the equivalent inductance between terminals A and B? _____

Problem 2 (30 points)

What is the time constant associated with this circuit?

What is the time constant associated with this circuit? _____

Problem 3 (40 points)

In the circuit below, the switch has been in position A for a very long time and moves to position B at t = 0.

Complete the table below:

$i_c(0^-) =$	$i_c(0^+) =$	$i_c(\infty) =$
$i_2(0^-) =$	$i_2(0^+) =$	$i_2(\infty) =$
$V_c(0^-) =$	$V_c(0^+) =$	$V_c(\infty) =$
$V_2(0^-) =$	$V_2(0^+) =$	$V_2(\infty) =$

For $t \ge 0$, what is $v_c(t)$? ______

For t > 0, what is $i_c(t)$?

Extra Credit (15 points)

Consider the circuit below:

How much energy is stored in the 5H inductor? _____

How much energy is stored in the 20μ F capacitor?

How much power is dissipated by the circuit? _____