ECE 209 - Exam \# 1

Estimated time for completion: <50 minutes
4 February 2015

Rules of the Exam

Rule 1: The examination period begins at 1:10pm on Wednesday 4 February 2015 and ends at 2:00pm on Wednesday 4 February 2015.

Rule 2: There are four problems plus one bonus problem.
Rule 3: Show all work and state all assumptions. Make sure to include the units along with a numerical answer.

Rule 4: The exam is closed book and closed notes. You may have an 8.5 " x 11 " sheet of paper with notes. You may use a calculator.

Rule 5: Please put your name on each page of the exam.

Name

\qquad

Problem 1 (20 points)

Consider the circuit below:

Ideal Basic Circuit Element

For $t<0$, the voltage and current at the terminals are both zero. For $t>0$, the voltage and current are given by:

$$
\begin{aligned}
& v(t)=50\left(e^{-1600 t}-e^{-400 t}\right) \mathrm{V} \\
& i(t)=20\left(e^{-1600 t}-e^{-400 t}\right) \mathrm{mA}
\end{aligned}
$$

What is the power dissipated by the circuit at $t=625 \mu \mathrm{~s}$? \qquad

What is the total energy delivered to the circuit element? \qquad

Name: \qquad

Problem 2 (30 points)
Consider the circuit below:

Is the interconnection valid (yes/no)? \qquad
If the circuit is valid:
How much power is dissipated by the 10Ω resistor? \qquad
How much power is associated with the dependent voltage source? \qquad
Does the dependent voltage source absorb or generate power? \qquad
If the circuit is not valid, explain why:

Name: \qquad

Problem 3 (30 points)
For each circuit below, calculate $R_{a b}$, the equivalent resistance between terminal a and terminal b :

$R_{a b}$ for circuit (a): \qquad
$R_{a b}$ for circuit (b): \qquad
$R_{a b}$ for circuit (c): \qquad

Name: \qquad

Problem 4 (20 points)
In the circuit below, the 4 A source delivers no power and absorbs no power. Determine the value of R_{1} and the amount of power generated by the 2 A source.

$R_{1}=$ \qquad
Power generated by the 2 A source $=$ \qquad

Name: \qquad

Bonus Problem (10 points)
Consider the circuits below. Assume all components are ideal.

Is the absolute value of the voltage across the $20 \mathrm{k} \Omega$ resistor in "Circuit A" greater than, less than, or equal to that across the $20 \mathrm{k} \Omega$ resistor in "Circuit B?" Explain.

