ECE 209 — Final Exam

Estimated time for completion: <120 minutes 15 December 2015

Rules of the Exam

Rule 1: The examination period begins at 12:15pm on Tuesday 15 December 2015 and ends at 2:15pm on Tuesday 15 December 2015.

Rule 2: There are four problems.

Rule 3: Show all work and state all assumptions. Make sure to include the units along with a numerical answer.

Rule 4: The exam is closed book and closed notes. You may have an 8.5" x 11" sheet of paper with notes. You may use a calculator.

Name

Problem 1 (25 points)

Consider the ideal Op Amp circuit below:

Part A: Derive the expression for V_{OUT} as a function of V_{IN} :

VIN	V _{OUT}
-6 V	
-3 V	
0 V	
3 V	
6 V	

Part B: Complete the table below:

Problem 2 (25 points)

Consider the circuit below:

What is the average real power associated with the voltage source?	
What is the reactive power associated with the voltage source?	
Does the voltage source deliver or absorb average real power?	
What is the average real power associated with the $j60\Omega$ inductor?	
What is the reactive power associated with the $j60\Omega$ inductor?	

Problem 3 (25 points)

In the circuit below, $V_g = 150\cos(100\pi t - 45^\circ)$ V.

Part A: Draw the Phasor (frequency domain) representation of the circuit

Part B: Draw the Thévenin equivalent circuit at terminals ${\bf A}$ and ${\bf B}$

Problem 4 (25 points)

For the ideal transformer circuit shown below, derive the equations needed to calculate $i_1(t)$, $i_2(t)$, $v_1(t)$, and $v_2(t)$. For extra credit, solve the equations.

Equations needed to calculate $i_1(t)$, $i_2(t)$, $v_1(t)$, and $v_2(t)$.

Extra Credit:

Name: _____

Name: _____

Name: _____