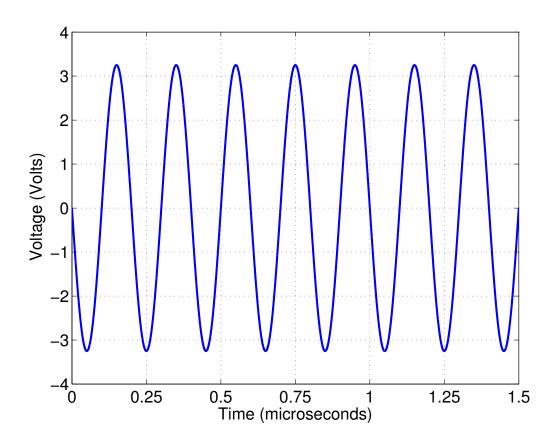
ECE 209 — Exam # 3

Estimated time for completion: <75 minutes 24 November 2015

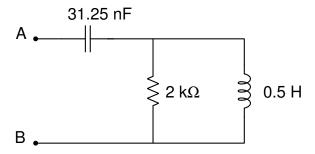

Rules of the Exam

- Rule 1: The examination period begins at 11:00pm on Tuesday 24 November 2015 and ends at 12:15pm on Tuesday 24 November 2015.
- Rule 2: There are three problems.
- Rule 3: Show all work and state all assumptions. Make sure to include the units along with a numerical answer.
- Rule 4: The exam is closed book and closed notes. You may have an 8.5" x 11" sheet of paper with notes. You may use a calculator.

Name
Name

Problem 1 (40 points)

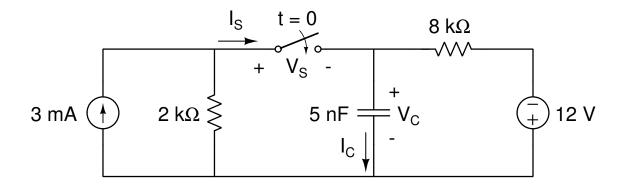
Part A: Consider the voltage waveform shown below:


What is V_{RMS} ?	
What is the peak-to-peak voltage?	
What is the frequency in Hz?	
What is the equation for $v(t)$?	
What is V the Phasor representation of $v(t)$	

Part B: Perform the following operations:

$$2\angle 60^{\circ} + j = \underline{\hspace{1cm}}$$

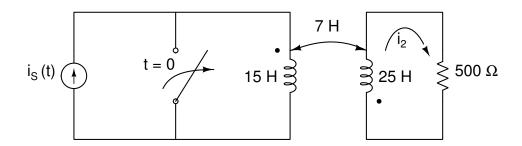
$$(4\angle 40^{\circ} \times 2\angle 40^{\circ}) + (3-j8) =$$


Part C: When terminals **A** and **B** in the circuit below are connected to a voltage source $v_g(t) = 64\cos(8000t)$ V

What is the equivalent impedance between terminals A and B?

Problem 2 (40 points)

In the circuit below, the switch has been open for a very long time and closes at t=0.



Complete the table below:

	$t = 0^{-}$	$\mathrm{t}=0^+$	$t = 5 \mu s$	$t = \infty$
V_c				
I_c				
V_s				
I_s				

Problem 3 (20 points)

In the circuit below, the switch has been closed for a very long time and opens at t = 0. There is no energy stored in the circuit at the time the switch opens.

What is $i_2(0^-)$ ______

What is $i_2(0^+)$ ______