ECE 209 - Exam \# 3

Estimated time for completion: <1.25 hour
25 November 2014

Rules of the Exam

Rule 1: The examination period begins at 11:00am on Tuesday 25 November 2014 and ends at 12:15pm on Tuesday 25 November 2014.

Rule 2: There are five problems plus an extra credit problem.
Rule 3: The exam is closed book and closed notes. You may have an 8.5 " x 11 " sheet of paper with notes and a calculator.

Rule 4: Show all work and state all assumptions.

Name

Problem 1 (20 points) In the circuit below, the switch has been closed for a very long time and there is no energy stored in the circuit at the time the switch opens.

What is $i_{2}\left(0^{-}\right)$ \qquad

What is $i_{2}\left(0^{+}\right)$ \qquad
For $t \geq 0$, write the differential equation that governs the behavior of $i_{2}(t)$
(Note: you do not need to solve the equation)

Problem 2 (20 points)

In the circuit below, the switch has been open for a very long time and closes at $t=0$.

Complete the table below:

$i_{1}\left(0^{-}\right)=$	$i_{1}\left(0^{+}\right)=$
$i_{2}\left(0^{-}\right)=$	$i_{2}\left(0^{+}\right)=$
$i_{3}\left(0^{-}\right)=$	$i_{3}\left(0^{+}\right)=$
$V_{L}\left(0^{-}\right)=$	$V_{L}\left(0^{+}\right)=$
$V_{3}\left(0^{-}\right)=$	$V_{3}\left(0^{+}\right)=$

Problem 3 (20 points)
Consider the circuit below:

The switch has been open for a very long time and there is no energy stored in the capacitor before the switch closes at $t=5 \mathrm{~ms}$.

Write the expression for $V_{C}(t)$ for $t \geq 5 \mathrm{~ms}$ \qquad
Write the expression for $V_{R}(t)$ for $t \geq 5 \mathrm{~ms}$ \qquad

Problem 4 (20 points)
What is the Phasor representation of the following time-domain signals:
$v(t)=4 \cos \left(2000 t+45^{\circ}\right) \mathrm{V}$
$i(t)=25 \sin \left(3500 t+80^{\circ}\right) \mathrm{mA}$

If the frequency is 5 kHz , what is the time-domain representation of the following Phasor signals:
$\mathbf{V}=6 \angle 40^{\circ} \mathrm{V}$ \qquad
$\mathbf{I}=21 \angle 65^{\circ} \mathrm{A}$ \qquad

Perform the following operations:
$2 \angle 45^{\circ}+5=$ \qquad
$4 \angle 30^{\circ} \times 2.5 \angle 40^{\circ}=$ \qquad
$(3-j 8) \times 4=$

Problem 5 (20 points)
Consider the circuit below:

What is the phasor voltage \mathbf{V}_{g} ? \qquad
What is the phasor current \mathbf{I}_{g} ? \qquad

Problem 6. (15 points - extra credit)
Draw the Thévenin Equivalent circuit at terminals "A" and "B" for the circuit below:

