ECE 209 — Exam # 3

Estimated time for completion: <1.25 hour 25 November 2014

Rules of the Exam

Rule 1: The examination period begins at 11:00am on Tuesday 25 November 2014 and ends at 12:15pm on Tuesday 25 November 2014.

Rule 2: There are five problems plus an extra credit problem.

Rule 3: The exam is closed book and closed notes. You may have an 8.5" x 11" sheet of paper with notes and a calculator.

Rule 4: Show all work and state all assumptions.

Name

Problem 1 (20 points) In the circuit below, the switch has been closed for a very long time and there is no energy stored in the circuit at the time the switch opens.

For $t \ge 0$, write the differential equation that governs the behavior of $i_2(t)$ _______(Note: you do not need to solve the equation)

Problem 2 (20 points)

In the circuit below, the switch has been open for a very long time and closes at t = 0.

Complete the table below:

$i_1(0^-) =$	$i_1(0^+) =$
$i_2(0^-) =$	$i_2(0^+) =$
$i_3(0^-) =$	$i_3(0^+) =$
$V_L(0^-) =$	$V_L(0^+) =$
$V_3(0^-) =$	$V_3(0^+) =$

Problem 3 (20 points)

Consider the circuit below:

The switch has been open for a very long time and there is no energy stored in the capacitor before the switch closes at t = 5 ms.

Write the expression for $V_C(t)$ for $t \ge 5$ ms _____

Write the expression for $V_R(t)$ for $t \ge 5$ ms ______

Problem 4 (20 points)

What is the Phasor representation of the following time-domain signals:

 $v(t) = 4\cos(2000t + 45^\circ) \text{ V}$

 $i(t) = 25\sin(3500t + 80^\circ) \text{ mA}$

If the frequency is 5 kHz, what is the time-domain representation of the following Phasor signals:

 $\mathbf{V} = 6 \ \angle 40^{\circ} \ \mathrm{V}$ _____

 $\mathbf{I} = 21 \ \angle 65^{\circ} \ \mathbf{A}$

Perform the following operations:

$2\angle 45^{\circ}$	+	5	=	
	•			

 $4\angle 30^\circ \times 2.5\angle 40^\circ = _$

 $(3-j8) \times 4 = _$

Problem 5 (20 points)

Consider the circuit below:

What is the phasor voltage \mathbf{V}_g ? _____

What is the phasor current \mathbf{I}_g ? _____

Problem 6. (15 points – extra credit)

Draw the Thévenin Equivalent circuit at terminals "A" and "B" for the circuit below:

