## ECE 209 - Exam \# 2

Estimated time for completion: $<1.25$ hour
28 October 2014

## Rules of the Exam

Rule 1: The examination period begins at 11:00am on Tuesday 28 October 2014 and ends at 12:15pm on Tuesday 28 October 2014.

Rule 2: There are five problems plus an extra credit problem.
Rule 3: The exam is closed book and closed notes. You may have an 8.5 " x 11 " sheet of paper with notes and a calculator.

Rule 4: Show all work and state all assumptions.

Name

Problem 1 (30 points)
Consider the circuit below:


Part A: Draw the Thévenin equivalent circuit with respect to terminals A and B. Label the values of the circuit components.

Part B: Draw the Norton equivalent circuit with respect to terminals A and B. Label the values of the circuit components.

Part C: A load resistor $R_{L}$ is placed between terminals A and B:
What value of $R_{L}$ produces maximum power transfer to the load?
What is the maximum power dissipated by $R_{L}$ ?

Problem 2 (15 points)

Consider the circuit below:


Part A: Draw the Thévenin equivalent circuit with respect to terminals A and B. Label the values of the circuit components.

Part B: Draw the Norton equivalent circuit with respect to terminals A and B. Label the values of the circuit components.

Problem 3 (25 points)

Consider the ideal Op Amp circuit below:


Derive an expression relating $V_{O U T}$ as a function of $V_{I N}$ :

Complete the table below:

| $V_{\text {IN }}$ | $V_{\text {OUT }}$ |
| ---: | :---: |
| -5.0 V |  |
| -2.5 V |  |
| 0 V |  |
| 2.5 V |  |
| 5.0 V |  |

Problem 4 (10 points)
Consider the ideal Op Amp circuit below:


Derive an expression relating $V_{O U T}$ as a function of $V_{I N}$ :

Complete the table below:

| $V_{I N}$ | $V_{\text {OUT }}$ |
| ---: | ---: |
| -1.0 V |  |
| -0.5 V |  |
| 0 V |  |
| 0.5 V |  |
| 1.0 V |  |

Problem 5 (20 points)
What is the equivalent capacitance between terminals A and B ? $\qquad$


What is the equivalent inductance between terminals A and B ?


Problem 6 (10 points - extra credit)
Consider the circuit shown below:


What is $V_{R}$ ? $\qquad$

What is $V_{L}$ ?

