ECE 209 — Exam # 2

Estimated time for completion: <1.25 hour 28 October 2014

<u>Rules of the Exam</u>

Rule 1: The examination period begins at 11:00am on Tuesday 28 October 2014 and ends at 12:15pm on Tuesday 28 October 2014.

Rule 2: There are five problems plus an extra credit problem.

Rule 3: The exam is closed book and closed notes. You may have an 8.5" x 11" sheet of paper with notes and a calculator.

Rule 4: Show all work and state all assumptions.

Name

Problem 1 (30 points)

Consider the circuit below:

Part A: Draw the Thévenin equivalent circuit with respect to terminals A and B. Label the values of the circuit components.

Part B: Draw the Norton equivalent circuit with respect to terminals A and B. Label the values of the circuit components.

Part C: A load resistor R_L is placed between terminals A and B: What value of R_L produces maximum power transfer to the load?

What is the maximum power dissipated by R_L ?

Problem 2 (15 points)

Consider the circuit below:

Part A: Draw the Thévenin equivalent circuit with respect to terminals A and B. Label the values of the circuit components.

Part B: Draw the Norton equivalent circuit with respect to terminals A and B. Label the values of the circuit components.

Problem 3 (25 points)

Consider the ideal Op Amp circuit below:

Derive an expression relating V_{OUT} as a function of $V_{IN}\colon$ _

Complete the table below:

VIN	Vout
-5.0 V	
-2.5 V	
0 V	
2.5 V	
5.0 V	

Problem 4 (10 points)

Consider the ideal Op Amp circuit below:

Derive an expression relating V_{OUT} as a function of V_{IN} :

Complete the table below:

VIN	V _{OUT}
-1.0 V	
-0.5 V	
0 V	
0.5 V	
1.0 V	

Problem 5 (20 points)

What is the equivalent capacitance between terminals A and B?

What is the equivalent inductance between terminals A and B?

Problem 6 (10 points – extra credit)

Consider the circuit shown below:

What is V_R ? _____

What is V_L ? _____