ECE 445 Design Project – 5-bit Carry-Ripple Adder

Part A: Design an inverter, ring oscillator, and digital buffer, using the 65nm CMOS process, that meet the following specifications.

- 1. Limitations
 - (a) Temperature = 27 C.
 - (b) $V_{DD} \le 1.2$ V.
- 2. 1X Inverter
 - (a) $L_n = L_p = 65 \text{ nm}, W_n \ge 100 \text{ nm}, W_p \ge 100 \text{ nm}.$
 - (b) Switching voltage (V_S) \approx V_{DD}/2.
 - (c) NML \approx NMH.
 - (d) $\mathbf{t}_{P_{HL}} \approx \mathbf{t}_{P_{LH}}$.
 - (e) t_P minimum.
- 3. Ring Oscillator and Digital Buffer
 - (a) Oscillation frequency f = 3 GHz $\pm 3\%$.
 - (b) Digital buffer allows the Ring Oscillator to drive a load capacitance of 1 pF.

Analyze the DC and time response of the inverter. Simulate the time response of the ring oscillator when driving a 1 pF load capacitor. Simulate the average power consumed by the ring oscillator and the digital buffer when driving a 1 pF load capacitor. Submit a short (less than 5 page) report describing the design and simulation results.

Tentative due date: 20 February 2024.

Part B: Design a 5-bit carry-ripple adder, configured as a counter, using the 65nm CMOS process that meets the following specifications:

- 1. Performance and Limitations:
 - (a) The 5-bit counter increments by "1" each clock cycle.
 - (b) Clock frequency = 3 GHz \pm 3% generated by the ring oscillator designed in Part A.
 - (c) Temperature = 27 C.
 - (d) $L_n = L_p = 65 \text{ nm}, W_n \ge 100 \text{ nm}, W_p \ge 100 \text{ nm}.$
 - (e) Average power consumption = minimum. The design with the lowest average power consumption wins!!!
- 2. Inputs (3):
 - (a) Single ground node labeled: "gnd".
 - (b) Single DC voltage source $V_{sup} \leq 1.2$ V.
 - (c) Clock generated by the ring oscillator designed in Part A. The output of the ring oscillator should be labeled "clk".
- 3. Outputs (4):
 - (a) Most significant bit labeled as "s4".
 - (b) Next most significant bit labeled as "s3".
 - (c) Next most significant bit labeled as "s2".
 - (d) Next most significant bit labeled as "s1",
 - (e) Least significant bit labeled as "s0".

Final Report: Submit a final report, similar to an ECE 342 lab report, describing the design and simulation results of the 5-bit carry ripple adder.

Tentative due date: 25 April 2024.