ECE 214 - Exam \#1

Estimated time for completion: ≤ 1.25 hour
5 March 2020

Rules of the Exam

Rule 1: The examination period begins at 9:30 am on Thursday, 5 March 2020, and ends at 10:45 am on Thursday, 5 March 2020.

Rule 2: The exam is worth 20% of your grade.
Rule 3: The exam is closed book and closed notes. You may use your ECE 214 Laboratory Notebook, a ruler, and a calculator.

Rule 4: To receive credit for an answer, include the units along with the numerical answer.
Rule 5: Show all work - answers without supporting work will not receive credit.
Rule 6: Do not leave the room until you have completed the exam.

Name

Problem 1 (6 points): Consider the voltage signal $\mathrm{V}(\mathrm{t})$ shown below:

This signal can be described as:

$$
\mathrm{V}(\mathrm{t})=A_{1} \cos \left(\omega_{1} t+\phi_{1}\right)+V_{D C 1} .
$$

1. What is A_{1} ? \qquad
2. What is ω_{1} ? \qquad
3. What is $V_{D C 1}$? \qquad
4. What is ϕ_{1} in degrees? \qquad
5. What is ϕ_{1} in radians? \qquad
6. If $\mathrm{V}(t)$ is measured using a DVM with a $5 \mathrm{M} \Omega$ input resistance, and set to measure an AC voltage, what voltage would the DVM measure? \qquad

Problem 2 (6 points): In the filter circuit shown below, $\mathrm{C}=400 \mathrm{pF}$ and $\mathrm{R}=80 \mathrm{k} \Omega$.

The voltage input signal $\mathrm{V}_{\mathrm{IN}}(t)$ is given by:

$$
\mathrm{V}_{\mathrm{IN}}(t)=5 \cos \left(9,940 \pi t+45^{\circ}\right)+2 \mathrm{~V},
$$

and the voltage output signal $\operatorname{Vout}(t)$ by:

$$
\mathrm{V}_{\mathrm{OUT}}(t)=A_{2} \cos \left(\omega_{2} t+\phi_{2}\right)+V_{D C 2}
$$

1. What is A_{2} ? \qquad
2. What is ω_{2} ? \qquad
3. What is ϕ_{2} ? \qquad
4. What is $V_{D C 2}$? \qquad
5. Is this circuit a high-pass, band-pass, band-reject, or low-pass filter? \qquad
6. If $\operatorname{VOUT}(t)$ is connected to an oscilloscope having an input resistance of $1 \mathrm{M} \Omega$ and an input capacitance of 13 pF , with a cable having a capacitance of 27 pF , what is the approximate value of A_{2} that is measured? \qquad

Problem 3a (4 points): Consider the OpAmp circuit shown below. The OpAmp is ideal.

What type of circuit is this? Circle one: inverting amplifier, inverting amplifier with DC offset, noninverting amplifier, noninverting amplifier with DC offset, differentiator, integrator, Schmitt trigger.

Complete the table below:

$\mathbf{V}_{\text {IN }}$	$\mathbf{V}_{\text {OUT }}$	$\mathbf{i}_{\text {OUT }}$
0 V		
1 V		
5 V		

Problem 3b (4 points): Consider the OpAmp circuit shown below. The OpAmp is ideal.

What type of circuit is this? Circle one: inverting amplifier, inverting amplifier with DC offset, noninverting amplifier, noninverting amplifier with DC offset, differentiator, integrator, Schmitt trigger.

Complete the table below:

$\mathbf{V}_{\text {IN }}$	$\mathbf{V}_{\text {OUT }}$	$\mathbf{i}_{\text {OUT }}$
0 V		
1 V		
5 V		

Bonus Question (2 points): In the circuit below, the 2A source delivers no power and absorbs no power. The circuit dissipates a total of 320 W . Determine the values of R1 and R2.

$R_{1}=$ \qquad
$R_{2}=$ \qquad

