ECE 214 — Exam #1

Estimated time for completion: ≤ 1.25 hour 5 March 2020

Rules of the Exam

- Rule 1: The examination period begins at 9:30 am on Thursday, 5 March 2020, and ends at 10:45 am on Thursday, 5 March 2020.
- **Rule 2:** The exam is worth 20% of your grade.
- **Rule 3:** The exam is closed book and closed notes. You may use your ECE 214 Laboratory Notebook, a ruler, and a calculator.
- Rule 4: To receive credit for an answer, include the units along with the numerical answer.
- Rule 5: <u>Show all work</u> answers without supporting work will not receive credit.
- Rule 6: Do not leave the room until you have completed the exam.

Name

Problem 1 (6 points): Consider the voltage signal V(t) shown below:

This signal can be described as:

$$V(t) = A_1 \cos(\omega_1 t + \phi_1) + V_{DC1}.$$

- 1. What is A_1 ? _____
- 2. What is ω_1 ? _____
- 3. What is V_{DC1} ?
- 4. What is ϕ_1 in degrees? _____
- 5. What is ϕ_1 in radians? _____
- 6. If V(t) is measured using a DVM with a 5 M Ω input resistance, and set to measure an AC voltage, what voltage would the DVM measure?

Problem 2 (6 points): In the filter circuit shown below, C = 400 pF and $R = 80 \text{ k}\Omega$.

The voltage input signal $V_{IN}(t)$ is given by:

 $V_{\rm IN}(t) = 5\cos(9,940\pi t + 45^{\circ}) + 2 \text{ V},$

and the voltage output signal $V_{OUT}(t)$ by:

 $V_{OUT}(t) = A_2 \cos(\omega_2 t + \phi_2) + V_{DC2}$

1. What is A_2 ? ______

- 2. What is ω_2 ? _____
- 3. What is ϕ_2 ? _____
- 4. What is V_{DC2} ? ______
- 5. Is this circuit a high-pass, band-pass, band-reject, or low-pass filter?
- 6. If $V_{OUT}(t)$ is connected to an oscilloscope having an input resistance of 1 M Ω and an input capacitance of 13 pF, with a cable having a capacitance of 27 pF, what is the approximate value of A_2 that is measured?

Problem 3a (4 points): Consider the OpAmp circuit shown below. The OpAmp is ideal.

What type of circuit is this? Circle one: inverting amplifier, inverting amplifier with DC offset, noninverting amplifier, noninverting amplifier with DC offset, differentiator, integrator, Schmitt trigger.

Complete the table below:

V _{IN}	V _{OUT}	i _{OUT}
0 V		
1 V		
5 V		

Problem 3b (4 points): Consider the OpAmp circuit shown below. The OpAmp is ideal.

What type of circuit is this? Circle one: inverting amplifier, inverting amplifier with DC offset, noninverting amplifier, noninverting amplifier with DC offset, differentiator, integrator, Schmitt trigger.

Complete the table below:

V _{IN}	V _{OUT}	\mathbf{i}_{OUT}
0 V		
1 V		
5 V		

Bonus Question (2 points): In the circuit below, the 2A source delivers no power and absorbs no power. The circuit dissipates a total of 320 W. Determine the values of R1 and R2.

 $R_1 = _$ _____

 $R_2 = _$ _____

Blank page for calculations.

Name: _____

Blank page for calculations.

Name: _____