ECE 214 - Final Exam

Estimated time for completion: ≤ 2.0 hour
7 May 2019

Rules of the Exam

Rule 1: The examination period begins at 10:30 am on Tuesday, 7 May 2019 and ends at 12:20 pm on Tuesday, 7 May 2019.

Rule 2: The exam is worth 15 points.
Rule 3: The exam is closed book and closed notes. You may use your ECE 214 Laboratory Notebook, a ruler, and a calculator.

Rule 4: To receive credit for an answer, include the units along with the numerical answer.
Rule 5: Show all work - answers without supporting work will not receive credit. Please circle your final answer or write the answer on the line provided.

Rule 6: Do not leave the room until you have completed the exam.
Rule 7: There are five problems; answer any three. Each problems is worth 6 points. The maximum score is 18 out of 15 . If you choose questions 1,2 , and 3 , and score higher than your Exam \#2 score, the final exam score will replace your Exam \#2 score; if you choose questions 1, 4, and 5, and score higher than your Exam \#1 score, the final exam score will replace your Exam \#1 score.

Rule 8: Circle the numbers corresponding to the problems you want graded:

1
2
3
4
5

Name

Problem 1: Consider the 2nd order ideal passive filter circuit shown below:

1. $\mathrm{V}_{\text {IN }}$ is a square wave with a 50% duty cycle and a frequency of 25 kHz . $\mathrm{V}_{\text {OUT }}$ is a sinusoidal waveform with a single frequency of 100 kHz . What type of filter could be used to generate $V_{\text {OUT }}$ (low pass, band pass, band reject, high pass, or no filter can produce this output)?
2. $\mathrm{V}_{\text {IN }}$ is a square wave with a 75% duty cycle and a frequency of 20 kHz . V Vut is a sinusoidal waveform with a single frequency of 50 kHz ? What type of filter could be used to generate Vout (low pass, band pass, band reject, high pass, or no filter can produce this output)?
3. $\mathrm{V}_{\text {IN }}$ is a square wave with a 50% duty cycle and a frequency of 15 kHz . The filter is a high pass filter with a cutoff frequency of 9 kHz . What is the relative amplitude of the 5 th harmonic to the fundamental frequency at the output of the filter?
4. $\mathrm{V}_{\text {IN }}$ is a square wave with a 50% duty cycle and a frequency of 9 kHz . The filter is a high pass filter with a cutoff frequency of 9 kHz . What is the relative amplitude of the 5th harmonic to the fundamental at the output of the filter?
5. $\mathrm{V}_{\text {IN }}$ is a square wave with a 50% duty cycle and a frequency of 3 kHz . The filter is a high pass filter with a cutoff frequency of 9 kHz . What is the relative amplitude of the 5 th harmonic to the fundamental at the output of the filter?
6. $\mathrm{V}_{\text {IN }}$ is a square wave with a 50% duty cycle and a frequency of 1 kHz . The filter is a high pass filter with a cutoff frequency of 9 kHz . What is the relative amplitude of the 5 th harmonic to the fundamental at the output of the filter?

Problem 2: Consider the series RLC circuit shown below. Assume all circuit elements are ideal.

(a) $V_{I N}(t)=5 \cos \left(2000 t-40^{\circ}\right)$. What is $V_{R}(t)$ at $t=0.4 \mathrm{~ms}$? \qquad
(b) $V_{I N}(t)$ is a 5 V step function applied at $t=0$. Assume no energy is stored in the circuit at $t=0$. What is $V_{R}(t)$ at $t=0.4 \mathrm{~ms}$?

Problem 3(a): Consider the circuit shown below.

(a) Draw the Thévenin equivalent circuit with respect to terminals \mathbf{A} and \mathbf{B}.

Problem 3(b): Consider the circuit shown below.

(b) Draw the Thévenin equivalent circuit with respect to terminals \mathbf{A} and \mathbf{B}.

Problem 4: Consider the RC circuit shown below:

The input signal $V_{I N}$ and output signal $V_{O U T}$ are given by:

$$
V_{I N}(t)=A \cos (\omega t)+V_{D C}
$$

and

$$
V_{O U T}(t)=B \cos (\omega t+\phi)+V_{D C}
$$

and are shown below:

1. What is B ? \qquad
2. What is ω ? \qquad
3. What is ϕ ? \qquad
4. What is $V_{D C}$? \qquad
5. What is R ? \qquad
6. What is the average energy stored in the capacitor? \qquad

Problem 5: For the OpAmp circuits below, calculate the output voltage, $\mathrm{V}_{\text {out }}$. The OpAmps are ideal.

(d)

OpAmp	$\mathrm{V}_{\text {out }}$	OpAmp	$\mathrm{V}_{\text {out }}$
(a)		(b)	
(c)		(d)	
(e)		(f)	

