ECE 214 - Exam \#1
 Estimated time for completion: ≤ 1.25 hour 6 March 2018

Rules of the Exam

Rule 1: The examination period begins at 11:00 am on Tuesday, 6 March 2018 and ends at 12:15 pm on Tuesday, 6 March 2018.

Rule 2: The exam is worth 15 points.
Rule 3: There are a total of 18 answers. Each answer is worth 1 point. The maximum score is 18 out of 15 .

Rule 4: The exam is closed book and closed notes. You may use your ECE 214 Laboratory Notebook, a ruler, and a calculator.

Rule 5: To receive credit for an answer include the units along with the numerical answer.
Rule 6: Show all work - answers without supporting work will not receive credit.
Rule 7: Do not leave the room until you have completed the exam.

Problem 1: The input and output signals from an amplifier circuit are shown below:

The input signal is described by:

$$
\begin{equation*}
\mathrm{V}_{\mathrm{IN}}(t)=V_{1} \cos (\omega t) \tag{1}
\end{equation*}
$$

and, the output signal by:

$$
\begin{equation*}
\mathrm{V}_{\mathrm{OUT}}(t)=V_{2} \cos (\omega t+\phi)+V_{2_{D C}} \tag{2}
\end{equation*}
$$

1. What is V_{1} ? \qquad
2. What is the voltage gain $=\left|\frac{V_{2}}{V_{1}}\right|$? \qquad
3. What is ω ? \qquad
4. What is ϕ ? \qquad
5. What is $V_{2_{D C}}$? \qquad
6. When $\mathrm{V}_{\mathrm{IN}}(t)$ is measured by a DVM set to measure an ac voltage, what value would the DVM indicate? \qquad

Problem 2: For the OpAmp circuits below, calculate the output voltage, $\mathrm{V}_{\text {out }}$, when the input voltage $\mathrm{V}_{\text {in }}=1 \mathrm{~V}$. The OpAmps are ideal.

OpAmp	$\mathrm{V}_{\text {out }}$	OpAmp	$\mathrm{V}_{\text {out }}$
(a)		(b)	
(c)		(d)	
(e)		(f)	

Problem 3: The frequency response of a filter is shown below.

1. What type of filter is this?
(a) Low pass filter
(b) High pass filter
(c) Band pass filter
(d) Band reject filter
(e) None of the above
2. What order filter is this?
(a) 1st order filter
(b) 2nd order filter
(c) 3rd order filter
(d) none of the above
3. What is the cut-off frequency? \qquad

When the input signal is a square wave with a period of $1 \mu \mathrm{~s}$, what
4. is the magnitude of the 3rd harmonic relative to the fundamental frequency at the output of the filter?

When the input signal is a square wave with a period of $10 \mu \mathrm{~s}$, what
5 . is the magnitude of the 3rd harmonic relative to the fundamental \qquad frequency at the output of the filter?

When the input signal is a square wave with a period of $100 \mu \mathrm{~s}$, what
6. is the magnitude of the 3 rd harmonic relative to the fundamental frequency at the output of the filter?

