ECE 214 — Exam #1

Estimated time for completion: ≤ 1.25 hour 6 March 2018

Rules of the Exam

- Rule 1: The examination period begins at 11:00 am on Tuesday, 6 March 2018 and ends at 12:15 pm on Tuesday, 6 March 2018.
- Rule 2: The exam is worth 15 points.
- **Rule 3:** There are a total of 18 answers. Each answer is worth 1 point. The maximum score is 18 out of 15.
- **Rule 4:** The exam is closed book and closed notes. You may use your ECE 214 Laboratory Notebook, a ruler, and a calculator.
- Rule 5: To receive credit for an answer include the units along with the numerical answer.
- Rule 6: <u>Show all work</u> answers without supporting work will not receive credit.
- Rule 7: Do not leave the room until you have completed the exam.

Name

Problem 1: The input and output signals from an amplifier circuit are shown below:

The input signal is described by:

$$V_{\rm IN}(t) = V_1 \cos(\omega t) \tag{1}$$

and, the output signal by:

$$V_{OUT}(t) = V_2 \cos(\omega t + \phi) + V_{2_{DC}}$$

$$\tag{2}$$

- 1. What is V_1 ? _____
- 2. What is the voltage gain = $\left|\frac{V_2}{V_1}\right|$? ______
- 3. What is ω ? _____
- 4. What is ϕ ? _____
- 5. What is $V_{2_{DC}}$? ______
- 6. When $V_{IN}(t)$ is measured by a DVM set to measure an ac voltage, what value would the DVM indicate?

Problem 2: For the OpAmp circuits below, calculate the output voltage, V_{out} , when the input voltage $V_{in} = 1$ V. The OpAmps are ideal.

OpAmp	V_{out}	OpAmp	V_{out}
(a)		(b)	
(c)		(d)	
(e)		(f)	

ECE 214 - Exam 1 (2018), Dr. David E. Kotecki, The University of Maine

Problem 3: The frequency response of a filter is shown below.

- 1. What type of filter is this?
 - (a) Low pass filter
 - (b) High pass filter
 - (c) Band pass filter
 - (d) Band reject filter
 - (e) None of the above
- 2. What order filter is this?
 - (a) 1st order filter
 - (b) 2nd order filter
 - (c) 3rd order filter
 - (d) none of the above
- 3. What is the cut-off frequency? _____

When the input signal is a square wave with a period of $1 \mu s$, what 4. is the magnitude of the 3rd harmonic relative to the fundamental frequency at the output of the filter?

When the input signal is a square wave with a period of $10 \,\mu$ s, what 5. is the magnitude of the 3rd harmonic relative to the fundamental

frequency at the output of the filter?

When the input signal is a square wave with a period of $100 \,\mu s$, what

6. is the magnitude of the 3rd harmonic relative to the fundamental frequency at the output of the filter?

Blank page for calculations.

Name: _____

Blank page for calculations.

Name: _____

Blank page for calculations.

Name: _____