ECE 214 — Final Exam

Estimated time for completion: ≤ 2.0 hours 6 May 2014

Rules of the Exam

- Rule 1: The examination period begins at 8:00am on Tuesday 6 May 2014 and ends at 10:00 on Tuesday 6 May 2014.
- **Rule 2:** There are three problems and an optional extra credit problem worth an additional five points.
- **Rule 3:** Circle your final answers and make sure to include the units along with the numerical answer.
- Rule 4: Show all work.
- **Rule 5:** The exam is closed book and closed notes but you may use your ECE 214 Laboratory Notebook and a calculator.

Name

Problem 1. (6 pts.) The voltage pulse shown below is equal to zero for T < 0. At $t = 549.3 \mu s$, the current I through the capacitor is zero. At some point in time the current I reaches a maximum negative value of 5 mA. What is the value of A?

Problem 2. (7 pts.) What are the minimum and maximum values of V_A that will prevent the output of the OpAmp (V_{OUT}) from saturating. The OpAmp is ideal.

Problem 3. (7 pts.) Consider the 1st order ideal passive filter circuit shown below:

For the questions below circle the most correct answer:

- 1. V_{IN} is a sine wave with a frequency of 50 kHz and a peak-to-peak voltage of 5 V. V_{OUT} is a sinusoidal waveform with a frequency of 150 kHz. What type of filter could be used to generate V_{OUT} ?
 - (a) low pass filter
 - (b) band pass filter
 - (c) band reject filter
 - (d) high pass filter
 - (e) none of the above
- 2. V_{IN} is a square wave with a 50% duty cycle, a frequency of 50 kHz, and a peak-to-peak voltage of 5 V. V_{OUT} is a sinusoidal waveform with a single frequency of 25 kHz. What type of filter could be used to generate V_{OUT} ?
 - (a) low pass filter
 - (b) band pass filter
 - (c) band reject filter
 - (d) high pass filter
 - (e) none of the above
- 3. V_{IN} is a square wave with a 50% duty cycle, a frequency of 50 kHz, and a peak-to-peak voltage of 5 V. V_{OUT} that is a sinusoidal waveform with a single frequency of 100 kHz? What type of filter could be used to generate V_{OUT} ?
 - (a) low pass filter
 - (b) band pass filter
 - (c) band reject filter
 - (d) high pass filter
 - (e) none of the above

- 4. V_{IN} is a square wave with a 50% duty cycle, a frequency of 50 kHz, and a peak-to-peak voltage of 5 V. The filter is a low pass filter with a cutoff frequency of 25 kHz. What is the relative amplitude of the 5th harmonic to the fundamental at the output of the filter?
 - (a) -3.00 dB
 - (b) -9.54 dB
 - (c) -13.98 dB
 - (d) -19.08 dB
 - (e) -27.96 dB
 - (f) -41.94 dB
- 5. V_{IN} is a triangular wave with a 50% duty cycle, a frequency of 50 kHz, and a peak-to-peak voltage of 5 V. The filter is a low pass filter with a cutoff frequency of 25 kHz. What is the relative amplitude of the 5th harmonic to the fundamental at the output of the filter?
 - (a) -3.00 dB
 - (b) -9.54 dB
 - (c) -13.98 dB
 - (d) -19.08 dB
 - (e) -27.96 dB
 - (f) -41.94 dB
- 6. V_{IN} is a triangular wave with a 50% duty cycle, a frequency of 50 kHz, and a peak-to-peak voltage of 10 V. The filter is a high pass filter with a cutoff frequency of 50 kHz. What is the relative amplitude of the 5th harmonic to the fundamental at the output of the filter?
 - (a) -3.00 dB
 - (b) -6.54 dB
 - (c) -9.54 dB
 - (d) -16.08 dB
 - (e) -21.94 dB
 - (f) -24.96 dB
- 7. V_{IN} is a triangular wave with a 50% duty cycle, a frequency of 50 kHz, and a peak-to-peak voltage of 10 V. The filter is a high pass filter with a cutoff frequency of 100 kHz. What is the relative amplitude of the 5th harmonic to the fundamental at the output of the filter?
 - (a) -3.00 dB
 - (b) -6.54 dB
 - (c) -9.54 dB
 - (d) -16.08 dB
 - (e) -21.94 dB
 - (f) -24.96 dB

Extra Credit Problem. (5 pts.) In the circuit below, the 5 mA source delivers no power and absorbs no power, the circuit dissipates a total of 100 mW of power, and stores 10 nJ of energy. Determine the values of R_1 , R_2 , and L_1 .

