ECE 214 - Final Exam

Estimated time for completion: ≤ 2.0 hours
6 May 2014

Rules of the Exam

Rule 1: The examination period begins at 8:00am on Tuesday 6 May 2014 and ends at 10:00 on Tuesday 6 May 2014.

Rule 2: There are three problems and an optional extra credit problem worth an additional five points.

Rule 3: Circle your final answers and make sure to include the units along with the numerical answer.

Rule 4: Show all work.
Rule 5: The exam is closed book and closed notes but you may use your ECE 214 Laboratory Notebook and a calculator.

Name

Problem 1. (6 pts .) The voltage pulse shown below is equal to zero for $T<0$. At $t=549.3 \mu \mathrm{~s}$, the current I through the capacitor is zero. At some point in time the current I reaches a maximum negative value of 5 mA . What is the value of A ?

Problem 2. (7 pts.) What are the minimum and maximum values of V_{A} that will prevent the output of the OpAmp (Vout) from saturating. The OpAmp is ideal.

Problem 3. (7 pts.) Consider the 1st order ideal passive filter circuit shown below:

For the questions below circle the most correct answer:

1. $\mathrm{V}_{\text {IN }}$ is a sine wave with a frequency of 50 kHz and a peak-to-peak voltage of 5 V . Vout is a sinusoidal waveform with a frequency of 150 kHz . What type of filter could be used to generate $V_{\text {OUT }}$?
(a) low pass filter
(b) band pass filter
(c) band reject filter
(d) high pass filter
(e) none of the above
2. $\mathrm{V}_{\text {IN }}$ is a square wave with a 50% duty cycle, a frequency of 50 kHz , and a peak-to-peak voltage of 5 V . V OUT is a sinusoidal waveform with a single frequency of 25 kHz . What type of filter could be used to generate $\mathrm{V}_{\text {Out }}$?
(a) low pass filter
(b) band pass filter
(c) band reject filter
(d) high pass filter
(e) none of the above
3. $\mathrm{V}_{\text {IN }}$ is a square wave with a 50% duty cycle, a frequency of 50 kHz , and a peak-to-peak voltage of 5 V . V Vut that is a sinusoidal waveform with a single frequency of 100 kHz ? What type of filter could be used to generate Vout?
(a) low pass filter
(b) band pass filter
(c) band reject filter
(d) high pass filter
(e) none of the above
4. $\mathrm{V}_{\text {IN }}$ is a square wave with a 50% duty cycle, a frequency of 50 kHz , and a peak-to-peak voltage of 5 V . The filter is a low pass filter with a cutoff frequency of 25 kHz . What is the relative amplitude of the 5th harmonic to the fundamental at the output of the filter?
(a) -3.00 dB
(b) -9.54 dB
(c) -13.98 dB
(d) -19.08 dB
(e) -27.96 dB
(f) -41.94 dB
5. $\mathrm{V}_{\text {IN }}$ is a triangular wave with a 50% duty cycle, a frequency of 50 kHz , and a peak-to-peak voltage of 5 V . The filter is a low pass filter with a cutoff frequency of 25 kHz . What is the relative amplitude of the 5th harmonic to the fundamental at the output of the filter?
(a) -3.00 dB
(b) -9.54 dB
(c) -13.98 dB
(d) -19.08 dB
(e) -27.96 dB
(f) -41.94 dB
6. $\mathrm{V}_{\text {IN }}$ is a triangular wave with a 50% duty cycle, a frequency of 50 kHz , and a peak-to-peak voltage of 10 V . The filter is a high pass filter with a cutoff frequency of 50 kHz . What is the relative amplitude of the 5th harmonic to the fundamental at the output of the filter?
(a) -3.00 dB
(b) -6.54 dB
(c) -9.54 dB
(d) -16.08 dB
(e) -21.94 dB
(f) -24.96 dB
7. $\mathrm{V}_{\text {IN }}$ is a triangular wave with a 50% duty cycle, a frequency of 50 kHz , and a peak-to-peak voltage of 10 V . The filter is a high pass filter with a cutoff frequency of 100 kHz . What is the relative amplitude of the 5th harmonic to the fundamental at the output of the filter?
(a) -3.00 dB
(b) -6.54 dB
(c) -9.54 dB
(d) -16.08 dB
(e) -21.94 dB
(f) -24.96 dB

Extra Credit Problem. (5 pts.) In the circuit below, the 5 mA source delivers no power and absorbs no power, the circuit dissipates a total of 100 mW of power, and stores 10 nJ of energy. Determine the values of R_{1}, R_{2}, and L_{1}.

