ECE 214 - Exam \# 1

Estimated time for completion: ≤ 1.25 hour

25 February 2014

Rules of the Exam

Rule 1: The examination period begins at 8:00am on Tuesday 25 February 2014 and ends at 9:15am on Tuesday 25 February 2014.

Rule 2: There are five problems with a total of 26 answers. Each answer is worth four points. There are four bonus points!

Rule 3: For all answers, make sure to include the units along with the numerical answer and show all work.

Rule 4: There is minimal partial credit.
Rule 5: The exam is closed book and closed notes but you may use your ECE 214 Laboratory Notebook, a ruler, and a calculator.

Problem 1 Oscilloscope traces for two voltage waveforms

$$
\mathrm{V}_{1}(t)=\mathrm{A}_{1} \cos \left(\omega t+\phi_{1}\right)+\mathrm{V}_{\mathrm{DC}_{1}}
$$

and

$$
\mathrm{V}_{2}(t)=\mathrm{A}_{2} \cos \left(\omega t+\phi_{2}\right)+\mathrm{V}_{\mathrm{DC}_{2}}
$$

are shown below.

(a) What is A_{1} ?
(b) What is A_{2} ?
(c) What is ω ?
(d) What is $\left|\phi_{1}-\phi_{2}\right|$?
(e) What is $\mathrm{V}_{\mathrm{DC}_{1}}$?
(f) What is $\mathrm{V}_{\mathrm{DC}_{2}}$?
(g) $\quad \mathrm{V}_{2}(t)$ is measured with a DVM, set to measure an ac voltage. What voltage is displayed on the DVM?

Problem 2 The Lissajous figure, using the XY-mode on the scope, produced by two voltage waveforms

$$
\mathrm{V}_{\mathrm{x}}(t)=\mathrm{X}_{0} \sin \left(\omega t+\phi_{1}\right)
$$

and

$$
\mathrm{V}_{\mathrm{y}}(t)=\mathrm{Y}_{0} \sin \left(\omega t+\phi_{2}\right)
$$

is shown below.

(a) What is X_{0} ?
(b) What is Y_{0} ?
(c) What is $\left|\phi_{1}-\phi_{2}\right|$ in degrees?
(d) What is $\left|\phi_{1}-\phi_{2}\right|$ in radians?

Problem 3 Consider the RC circuit and step response at $t=0$ shown below:

The step response is given by $\mathrm{V}_{\text {OUT }}(t)=\mathrm{V}_{0}\left(1-e^{-t / \tau}\right)$ for $t \geq 0$
(a) What is V_{0} ?
(b) What is R?
(c) What is the rise-time?
\qquad
(d) Is this circuit a low pass, high pass, band pass or band reject filter?
(e) At what frequency is $\mathrm{V}_{\text {OUT }} / \mathrm{V}_{\text {IN }}=-20 \mathrm{~dB}$?
(f) At what frequency is $\mathrm{V}_{\text {OUT }} / \mathrm{V}_{\text {IN }}=-28 \mathrm{~dB}$?

Problem 4 A digital volt meter (DVM), having an input resistance of $10 \mathrm{M} \Omega$, is used to make measurements on the circuit below.

(a) What is the actual voltage V_{AB} ? \qquad
(b) What is the measured voltage V_{AB} ? \qquad
(c) What is the actual voltage V_{C} with respect to ground?
(d) What is the measured voltage V_{C} with respect to ground?

Problem 5 In the schematic below, assume the OpAmp is ideal.

(a) Is this circuit an inverting amplifier, a noninverting amplifier, an inverting differentiator, an inverting integrator, or a Schmitt trigger?
(b) When $\mathrm{V}_{\mathrm{IN}}=1.0 \mathrm{mV}$, what is $\mathrm{V}_{\text {OUT }}$?
(c) When $\mathrm{V}_{\text {IN }}=-1.0 \mathrm{mV}$, what is $\mathrm{V}_{\text {OUt }}$?
(d) When $\mathrm{V}_{\text {IN }}=10 \mathrm{mV}$, what is $\mathrm{V}_{\text {OUT }}$?
(e) When $\mathrm{V}_{\text {IN }}=-10 \mathrm{mV}$, what is $\mathrm{V}_{\text {OUT }}$?

