ECE 214 — Final Exam

Estimated time for completion: <2 hours 7 May 2013

Rules of the Exam

- Rule 1: The examination period begins at 8:00am on Tuesday 7 May 2013 and ends at 10:00am on Tuesday 7 May 2013.
- Rule 2: There are three problems. Each problem has equal weight.
- Rule 3: The exam is closed book and closed notes but you may use your ECE 214 Laboratory Notebook, a ruler, and a calculator.
- Rule 4: Hand in your ECE 214 Laboratory Notebook with the exam.
- Rule 5: Have a good Summer.

_____Name

Problem 1 Consider the circuit shown below:

What is the Voltage V_{AB} in this circuit? _____

If a Digital Volt Meter (DVM) having an input Resistance of 1 M Ω is placed across terminals "A" and "B," what voltage V_{AB} is measured?

Problem 2: Consider the 1st order ideal passive filter circuit shown below:

For the questions below circle the most correct answer:

- 1. $V_{\rm IN}$ is a square wave with a 75% duty cycle, a frequency of 25 kHz, and a peak-to-peak voltage of 5 V. $V_{\rm OUT}$ is a sinusoidal waveform with a single frequency of 50 kHz. What type of filter could be used to generate $V_{\rm OUT}$?
 - (a) low pass filter
 - (b) band pass filter
 - (c) band reject filter
 - (d) high pass filter
 - (e) none of the above
- 2. V_{IN} is a square wave with a 75% duty cycle, a frequency of 25 kHz, and a peak-to-peak voltage of 5 V. V_{OUT} that is a sinusoidal waveform with a single frequency of 75 kHz? What type of filter could be used to generate V_{OUT} ?
 - (a) low pass filter
 - (b) band pass filter
 - (c) band reject filter
 - (d) high pass filter
 - (e) none of the above

- 3. $V_{\rm IN}$ is a square wave with a 50% duty cycle and a frequency of 20 kHz. The filter is a low pass filter with a cutoff frequency of 80 kHz. What is the relative amplitude of the 3rd harmonic to the fundamental at the output of the filter?
 - (a) -22.08 dB
 - (b) -19.08 dB
 - (c) -16.08 dB
 - (d) -12.54 dB
 - (e) -9.54 dB
 - (f) -6.54 dB
 - (g) none of the above
- 4. $V_{\rm IN}$ is a square wave with a 50% duty cycle and a frequency of 20 kHz. The filter is a high pass filter with a cutoff frequency of 80 kHz. What is the relative amplitude of the 3rd harmonic to the fundamental at the output of the filter?
 - (a) -22.08 dB
 - (b) -19.08 dB
 - (c) -16.08 dB
 - (d) -12.54 dB
 - (e) -9.54 dB
 - (f) -6.54 dB
 - (g) none of the above
- 5. $V_{\rm IN}$ is a square wave with a 50% duty cycle and a frequency of 20 kHz. The filter is a low pass filter with a cutoff frequency of 60 kHz. What is the relative amplitude of the 3rd harmonic to the fundamental at the output of the filter?
 - (a) -22.08 dB
 - (b) -19.08 dB
 - (c) -16.08 dB
 - (d) -12.54 dB
 - (e) -9,54 dB
 - (f) -6.54 dB
 - (g) none of the above

Problem 3: In the circuit below, the voltage–controlled switches, S_1 and S_2 , are closed when the control voltage is > 2 V and open when the control voltage is < 2 V

- 1. What is the shape of the output waveform?
 - (a) square waveform with a 50 duty cycle
 - (b) square waveform with < 50% duty cycle
 - (c) square waveform with > 50% duty cycle
 - (d) triangular waveform
 - (e) sinusoidal waveform
 - (f) None of the above
- 2. What is the maximum value of V_{OUT} ?
- 3. What is the frequency of the output waveform?
- 4. What is the duty cycle of the output waveform?
- 5. Estimate the power dissipated by this circuit _____

Blank Page #1

Blank Page #2