ECE 214 — Exam # 2

Estimated time for completion: $<\!\!1.25$ hour 16 April 2013

Rules of the Exam

Rule 1: The examination period begins at 8:00am on Tuesday 16 April 2013 and ends at 9:15am on Tuesday 16 April 2013.

Rule 2: There are three problems. All problems have equal weight.

Rule 3: The exam is closed book and closed notes but you may use your ECE 214 Laboratory Notebook, a ruler, and a calculator.

 $\label{eq:Rule 4: Show all work and intermediate steps in your solutions. Clearly state all assumptions. Be neat!!!$

Name

Problem 1 The op-amp below is ideal. The input signal is V_{in} .

Figure 1: Circuit #1

Which of the following best describes Circuit #1?

- 1. Inverting OpAmp with DC offset
- 2. Non–Inverting OpAmp with DC offset
- 3. Inverting Integrator
- 4. Non–Inverting Integrator
- 5. Schmitt Trigger

Write the equation for the output voltage V_o as a function of the input voltage V_{in} ? Sketch the output voltage V_o for the given input voltage V_{in} shown on the next page. Make sure to label the "Y-axis" of the graph.

Figure 2: Input and output voltages for Circuit #1

Problem 2 The op-amp below is ideal. The input signal is V_{in} .

Figure 3: Circuit #2

Which of the following best describes Circuit #2?

- 1. Inverting OpAmp with DC offset
- 2. Non–Inverting OpAmp with DC offset
- 3. Inverting Integrator
- 4. Non–Inverting Integrator
- 5. Schmitt Trigger

Write the equation for the output voltage V_o as a function of the input voltage V_{in} ? Sketch the output voltage V_o for the given input voltage V_{in} shown on the next page. Make sure to label the "Y-axis" of the graph.

Figure 4: Input and output voltages for Circuit #2

Problem 3: Filter Circuit

Consider the ideal passive filter circuit shown below:

For the questions below circle the most correct answer:

- 1. V_{IN} is a square wave with a 50% duty cycle, a frequency of 25 kHz and a peak–to–peak voltage of 5 V. V_{OUT} is a sinusoidal waveform with a single frequency of 50 kHz. What type of filter could be used to generate V_{OUT} ?
 - (a) low pass filter
 - (b) band pass filter
 - (c) band reject filter
 - (d) high pass filter
 - (e) none of the above
- 2. V_{IN} is a square wave with a 50% duty cycle, a frequency of 25 kHz and a peak–to–peak voltage of 5 V. V_{OUT} that is a sinusoidal waveform with a single frequency of 75 kHz? What type of filter could be used to generate V_{OUT} ?
 - (a) low pass filter
 - (b) band pass filter
 - (c) band reject filter
 - (d) high pass filter
 - (e) none of the above

- 3. V_{IN} is a triangular wave with a frequency of 20 kHz and the filter is a low pass filter with a cutoff frequency of 60 kHz. What is the relative amplitude of the 3rd harmonic to the fundamental at the output of the filter?
 - (a) -22.08 dB
 - (b) -19.08 dB
 - (c) $-16.08~\mathrm{dB}$
 - (d) -12.54 dB
 - (e) -3 dB
 - (f) +3 dB
 - (g) none of the above
- 4. V_{IN} is a triangular wave with a frequency of 20 kHz and the filter is a high pass filter with a cutoff frequency of 20 kHz. What is the relative amplitude of the 3rd harmonic to the fundamental at the output of the filter?
 - (a) -22.08 dB
 - (b) -19.08 dB
 - (c) -16.08 dB
 - (d) -12.54 dB
 - (e) -3 dB
 - (f) + 3 dB
 - (g) none of the above
- 5. V_{IN} is a triangular wave with a frequency of 20 kHz and the filter is a high pass filter with a cutoff frequency of 60 kHz. What is the relative amplitude of the 3rd harmonic to the fundamental at the output of the filter?
 - (a) -22.08 dB
 - (b) -19.08 dB
 - (c) -16.08 dB
 - (d) -12.54 dB
 - (e) -3 dB
 - (f) + 3 dB
 - (g) none of the above