ECE 214 - Exam \# 2

Estimated time for completion: <1.25 hour 16 April 2013

Rules of the Exam

Rule 1: The examination period begins at 8:00am on Tuesday 16 April 2013 and ends at 9:15am on Tuesday 16 April 2013.

Rule 2: There are three problems. All problems have equal weight.
Rule 3: The exam is closed book and closed notes but you may use your ECE 214 Laboratory Notebook, a ruler, and a calculator.

Rule 4: Show all work and intermediate steps in your solutions. Clearly state all assumptions. Be neat!!!

Name

Problem 1 The op-amp below is ideal. The input signal is $V_{i n}$.

Figure 1: Circuit \#1

Which of the following best describes Circuit \#1?

1. Inverting OpAmp with DC offset
2. Non-Inverting OpAmp with DC offset
3. Inverting Integrator
4. Non-Inverting Integrator
5. Schmitt Trigger

Write the equation for the output voltage V_{o} as a function of the input voltage $V_{i n}$? Sketch the output voltage V_{o} for the given input voltage $V_{i n}$ shown on the next page. Make sure to label the "Y-axis" of the graph.

Figure 2: Input and output voltages for Circuit \#1

Problem 2 The op-amp below is ideal. The input signal is $V_{i n}$.

Figure 3: Circuit \#2

Which of the following best describes Circuit \#2?

1. Inverting OpAmp with DC offset
2. Non-Inverting OpAmp with DC offset
3. Inverting Integrator
4. Non-Inverting Integrator
5. Schmitt Trigger

Write the equation for the output voltage V_{o} as a function of the input voltage $V_{i n}$? Sketch the output voltage V_{o} for the given input voltage $V_{\text {in }}$ shown on the next page. Make sure to label the "Y-axis" of the graph.

Figure 4: Input and output voltages for Circuit \#2

Problem 3: Filter Circuit
Consider the ideal passive filter circuit shown below:

For the questions below circle the most correct answer:

1. $\mathrm{V}_{\text {IN }}$ is a square wave with a 50% duty cycle, a frequency of 25 kHz and a peak-to-peak voltage of 5 V . Vout is a sinusoidal waveform with a single frequency of 50 kHz . What type of filter could be used to generate $\mathrm{V}_{\text {OUT }}$?
(a) low pass filter
(b) band pass filter
(c) band reject filter
(d) high pass filter
(e) none of the above
2. $\mathrm{V}_{\text {IN }}$ is a square wave with a 50% duty cycle, a frequency of 25 kHz and a peak-to-peak voltage of 5 V . V OUT that is a sinusoidal waveform with a single frequency of 75 kHz ? What type of filter could be used to generate $V_{\text {OUT }}$?
(a) low pass filter
(b) band pass filter
(c) band reject filter
(d) high pass filter
(e) none of the above
3. $\mathrm{V}_{\text {IN }}$ is a triangular wave with a frequency of 20 kHz and the filter is a low pass filter with a cutoff frequency of 60 kHz . What is the relative amplitude of the 3 rd harmonic to the fundamental at the output of the filter?
(a) -22.08 dB
(b) -19.08 dB
(c) -16.08 dB
(d) -12.54 dB
(e) -3 dB
(f) +3 dB
(g) none of the above
4. $\mathrm{V}_{\text {IN }}$ is a triangular wave with a frequency of 20 kHz and the filter is a high pass filter with a cutoff frequency of 20 kHz . What is the relative amplitude of the 3rd harmonic to the fundamental at the output of the filter?
(a) -22.08 dB
(b) -19.08 dB
(c) -16.08 dB
(d) -12.54 dB
(e) -3 dB
(f) +3 dB
(g) none of the above
5. $\mathrm{V}_{\text {IN }}$ is a triangular wave with a frequency of 20 kHz and the filter is a high pass filter with a cutoff frequency of 60 kHz . What is the relative amplitude of the 3rd harmonic to the fundamental at the output of the filter?
(a) -22.08 dB
(b) -19.08 dB
(c) -16.08 dB
(d) -12.54 dB
(e) -3 dB
(f) +3 dB
(g) none of the above
