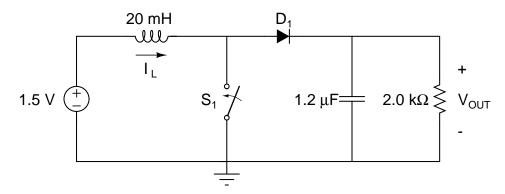
ECE 214 Linear Circuits Lab — Final Exam 3 May 2012

Rules of the Exam

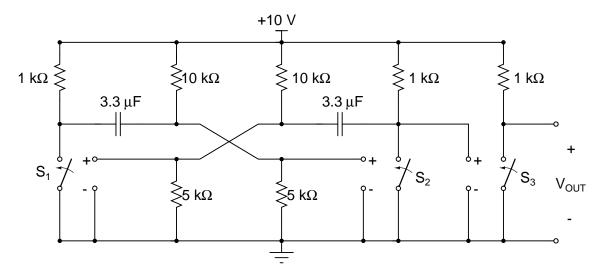

Rule 1: There are four exam questions each worth 5 points.
Rule 2: There are two optional bonus question each worth 5 points. The 10 points from the bonus questions will be added to your overall class score. The bonus questions are graded all or nothing – no partial credit will be awarded for the bonus question.
Rule 3: You have 120 minutes to complete the exam. The exam is open book and open notes. You may use your ECE 214 Engineering Notebook and a calculator.
Rule 4: If you leave the room during the exam your exam will not be accepted.
Rule 5: Show all work and intermediate steps in your solutions. Answers without supporting work will receive no credit. Clearly state all assumptions. Be neat!!!

Name	

Have a Good Summer!!!

Problem 1: Boost Circuit

Consider the boost circuit shown below. Assume all components are ideal. The voltage drop across the diode is 0.7 V when current flows through the diode.



The switch S_1 has been open for a very long time. At time t = 0 the switch is closed. The switch remains closed for 15 ms at which time the switch opens and remains open for the remainder of all time.

- a) What is I_L at t = 0 s?
- b) What is V_{OUT} at t = 0 s?
- c) What is I_L at t = 2.8 ms?
- d) What is V_{OUT} at t = 2.8 ms?
- e) What is I_L at t = 300 ms?
- f) What is V_{OUT} at t = 300 ms?

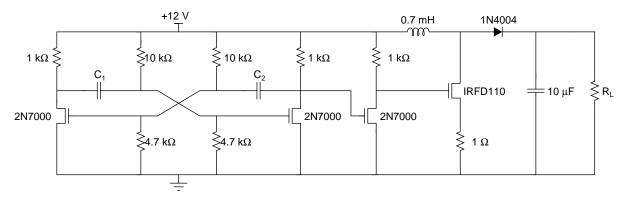
Problem 2: Astable Multivibrator

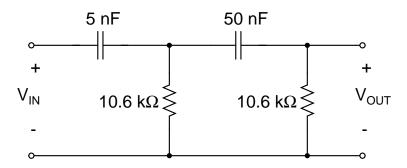
Consider the circuit shown below. The ideal switches S_1 , S_2 and S_3 are closed when the control voltage is above 3.0 V and are opened when the control voltage is below 3.0 V.

- a) Is the output signal, $V_{\rm OUT}$, a DC voltage, a sine wave, a square wave, a triangular wave, sawtooth wave, or something else?
- b) What is the approximate period of $V_{\rm OUT}$?
- c) What is the amplitude of V_{OUT} ?

Problem 3: DC-DC Converter Circuit

Consider the DC-DC converter circuit shown below:



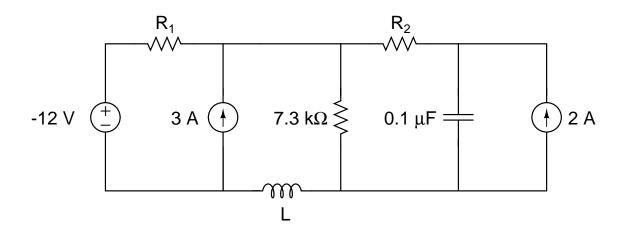

Figure 1: DC-DC converter circuit.

This circuit is designed to produce a 30 V DC output with ± 50 mV of ripple across resistor R_L .

- a) If the value of C1 is decreased by 15%, what is the approximate output voltage?
 - ____
- b) If the value of C1 is decreased by 15%, what is the approximate ripple?
- c) If the values of C1 and C2 are both doubled, what is the approximate output voltage?
- d) If the values of C1 and C2 are both doubled, what is the approximate ripple?
- ____

Problem 4: Filter Circuit

Consider the filter circuit shown below:

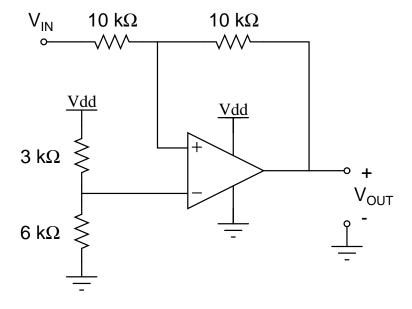


- 1 Is this circuit a low–pass, band–pass, notch, or high–pass filter?
- 2 What is the transfer function H(s) for this filter?

- 3 What is/are the -3 dB frequency/frequencies of this filter?
- 4 What is/are the -6 dB frequency/frequencies of this filter?
- 5 When a 1 V peak—to—peak square wave with a frequency of 3 kHz is applied to the input of this filter, what is the dominant frequency in the output signal from the filter?

Bonus Problem 1: Energy / Power Question

In the circuit below, the 3 A source delivers no power and absorbs no power. The circuit dissipates a total of 200 W of power and stores 1.0 mJ of energy. Determine the values of R_1 , R_2 and L.


$$R_1 =$$

$$R_2 =$$

$$L = \underline{\hspace{1cm}}$$

Bonus Problem 2: OpAmp Circuit

Consider the OpAmp circuit shown below. Assume the OpAmp is ideal and $V_{dd}=9~V.$

- 1. What is the function of this circuit?
- 2. $V_{\rm IN}$ is a triangular waveform with 1 V peak–to–peak voltage and 0 V DC offset. What type of waveform is $V_{\rm OUT}$?
- 3. $V_{\rm IN}=2$ V. What is $V_{\rm OUT}$?
- 4. $V_{\rm IN}=12$ V. What is $V_{\rm OUT}$?
- 5. $V_{IN} = 9 \text{ V. What is } V_{OUT}$?