ECE 214 Linear Circuits Lab - Final Exam

3 May 2012

Rules of the Exam

Rule 1: There are four exam questions each worth 5 points.
Rule 2: There are two optional bonus question each worth 5 points. The 10 points from the bonus questions will be added to your overall class score. The bonus questions are graded all or nothing - no partial credit will be awarded for the bonus question.
Rule 3: You have 120 minutes to complete the exam. The exam is open book and open notes. You may use your ECE 214 Engineering Notebook and a calculator.
Rule 4: If you leave the room during the exam your exam will not be accepted.
Rule 5: Show all work and intermediate steps in your solutions. Answers without supporting work will receive no credit. Clearly state all assumptions. Be neat!!!

Name

Have a Good Summer!!!

Problem 1: Boost Circuit

Consider the boost circuit shown below. Assume all components are ideal. The voltage drop across the diode is 0.7 V when current flows through the diode.

The switch S_{1} has been open for a very long time. At time $t=0$ the switch is closed. The switch remains closed for 15 ms at which time the switch opens and remains open for the remainder of all time.
a) What is I_{L} at $t=0 \mathrm{~s}$?
b) What is V Vut at $t=0 \mathrm{~s}$? \qquad
c) What is I_{L} at $t=2.8 \mathrm{~ms}$? \qquad
d) What is V Vut at $t=2.8 \mathrm{~ms}$? \qquad
e) What is I_{L} at $t=300 \mathrm{~ms}$? \qquad
f) What is V Vut at $t=300 \mathrm{~ms}$? \qquad

Problem 2: Astable Multivibrator
Consider the circuit shown below. The ideal switches S_{1}, S_{2} and S_{3} are closed when the control voltage is above 3.0 V and are opened when the control voltage is below 3.0 V .

a) Is the output signal, V ${ }_{\text {OUT }}$, a DC voltage, a sine wave, a square wave, a triangular wave, sawtooth wave, or something else?
b) What is the approximate period of Vout?
c) What is the amplitude of $V_{\text {OUT }}$?

Problem 3: DC-DC Converter Circuit

Consider the DC-DC converter circuit shown below:

Figure 1: DC-DC converter circuit.

This circuit is designed to produce a 30 V DC output with $\pm 50 \mathrm{mV}$ of ripple across resistor R_{L}.
a) If the value of C 1 is decreased by 15%, what is the approximate output voltage?
b) If the value of C 1 is decreased by 15%, what is the approximate ripple?
c) If the values of C1 and C2 are both doubled, what is the approximate output voltage?
d) If the values of C 1 and C 2 are both doubled, what is the approximate ripple?

Problem 4: Filter Circuit
Consider the filter circuit shown below:

1 Is this circuit a low-pass, band-pass, notch, or high-pass filter? \qquad
2 What is the transfer function $H(s)$ for this filter?

3 What is/are the -3 dB frequency/frequencies of this filter? \qquad

4 What is/are the -6 dB frequency/frequencies of this filter? \qquad

5 When a 1 V peak-to-peak square wave with a frequency of 3 kHz is applied to the input of this filter, what is the dominant frequency in the output signal from the filter? \qquad

Bonus Problem 1: Energy / Power Question
In the circuit below, the 3 A source delivers no power and absorbs no power. The circuit dissipates a total of 200 W of power and stores 1.0 mJ of energy. Determine the values of R_{1}, R_{2} and L.

Bonus Problem 2: OpAmp Circuit

Consider the OpAmp circuit shown below. Assume the OpAmp is ideal and $\mathrm{V}_{d d}=9 \mathrm{~V}$.

1. What is the function of this circuit?
2. $\mathrm{V}_{\text {IN }}$ is a triangular waveform with 1 V peak-to-peak voltage and 0 V DC offset. What type of waveform is Vout?
3. $\mathrm{V}_{\text {IN }}=2 \mathrm{~V}$. What is $\mathrm{V}_{\text {OUT }}$?
4. $\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}$. What is $\mathrm{V}_{\text {OUT }}$?
5. $\mathrm{V}_{\text {IN }}=9 \mathrm{~V}$. What is $\mathrm{V}_{\text {OUT }}$?
