NGspice Primer
Within CppSim (Version 5) Framework

Michael H. Perrott
http://www.cppsim.com

October 12, 2013

Copyright © 2004-2013 by Michael H. Perrott
All rights reserved.

Table of Contents
LT [8Tox (o] o TP U PP PRURPRPRPRTOTPTR 2
Setup (WINdows 7/ViSta/XP/2000)cueiiiieeiieiesieesiee ettt sttt s sbeeae s e nne e 3
KINMOWIN BUGS ..tttk ekt e bt e et e e ket e e Rt e e e Rt e e e e bt et e nbb e e e bb e e e bneeanbneeanes 3
The Basics of Running NGSPICe SIMUIALIONSccueiiiiiiiiiie e 4
A. Running an NGspice Transient SImulation iN SUE2...........c.ccviiereiieiie i 4
B. Editing Schematic Level Module Parameters...........coieeiieeiiiiieie e 8
C. Editing Simulation Files (i.e., teSt.NSPC fIlES)ecveiiei e 13
D. AC ANalYSIS EXAMPIE ...t 14
E. DC ANAlYSIS EXAMPIE.....ccuiiiieieiie ettt ettt esteeaeeneenreenaesneenneens 17
F. NOiSE ANAlYSIS EXAMPIE ...ttt st ae e nne e 20
Using Matlab or Octave With NGSPICEcueiieiiiieieeie et saaesae e sreenneens 24
YN =T Tol @ oL = U1 o] 1 USRS 24
B. Running Parameter Sweeps using Matlab/Octave SCripting.........ccccovevivereiiiesieenn e, 26
USING PYThoN WIth NGSPICEceeiieiiecie ettt beenae e 31
N 2 T Y (o @ 1= 11 o] USSP 32
B. Running Parameter Sweeps using PYthon SCrPiNGccooviiriiniiiie e 36
More Details 0N CPPSIMVIBWc.viiiieiieii ettt te e e s re e ae e e e sneesteaneeaneenneens 40
A. Basic Plotting and Z00m MEthOUScouiiiiiiiieiie e 41
D. Advanced PIOttING IMETNOUSooieiieieiieci ettt ae e nne e 43
E. Saving Plots to EPS files, FIG files, or the Windows Clipboard............ccccocoiviiininiiiiiiiiiine 44
MOTE DELAIIS ON SUBZ ...ttt bbbttt b e bbb be et nn e 45
A. Using Navigation and Edit COMMANGSccooiiiiiiiiiiie e 45
B. Creating @ NEW SCNEMALICcccveiiiiieiieie ettt esta e e e ereenraenneens 46
C. Creating an Icon View (And Associated Parameters) For A Given Schematic.............c...ccoeue.. 53

Introduction

CppSim is a general behavioral simulation framework that leverages the C++ language to achieve
very fast simulation times, and a graphical framework to allow ease of design entry and modification.
Users may freely use this package for either educational or industrial purposes without restriction.
However, the package and all of its components come with no warranty or support.

Starting with CppSim Version 4.1, NGspice is included as an auxiliary simulator within the CppSim
framework. At this point in time, there is no direct interaction between NGspice and the CppSim
simulator, but there are various conveniences provided for NGspice such as schematic entry using the
Sue2 schematic editor, a simple GUI interface for running NGspice simulations, a waveform viewer
using CppSimView, support for Python using the Ngspice Data module for Python, and
Matlab/Octave using the Hspice Toolbox for Matlab/Octave. All of these packages are included
within the CppSim installation file.

To install this package, a self-extracting installation file for Windows 7/Vista/XP/2000 machines is
readily downloadable from the web at http://www.cppsim.com. Running this file automatically
installs several sub-packages to perform the various tasks required:

1) Sue2: afree, open source, schematic capture program that is easy to use and has a similar look
and feel as Cadence Composer,

2) CppSimView: a free waveform viewer that allows easy plotting of signals produced by
CppSim and NGspice,

3) CppSim and Ngspice Data Modules for Python: a free, open source set of Python classes and
routines to allow straightforward access to CppSim and Ngspice simulation results within
Python.

4) Hspice Toolbox for Matlab/Octave: a free, open source set of Matlab/Octave routines to allow
straightforward access to Hspice, NGspice, and CppSim simulation results within Matlab or
Octave,

5) Emacs: a free, open source, text editor that is especially convenient for writing and editing
simulation files used with NGspice,

This document is intended as a primer that covers basic use of NGspice in conjunction with Sue2,
CppSimView, and Matlab. While this document covers enough information on running NGspice
within the CppSim framework to get a good idea of its operation, a more full description of the
capabilities and functionality of NGspice is provided in its manual available in
c:/CppSim/CppSimShared/NGspice/doc/ngspice23-manual.pdf (Note that c:/CppSim should be
replaced by the actual path you chose for CppSim during its installation). The Sue2, CppSim Data
module for Python, and Hspice Toolbox manuals are provided in the files sue2_manual.pdf,
cppsimdata_for_python.pdf, and hspice_toolbox.pdf, respectively, and are available in the Doc
menu of Sue2. Note that there is no separate manual for CppSimView — this document contains a full
description of CppSimView.

Setup (Windows 7/Vista/XP/2000)

Go to the web site http://www.cppsim.com/dowload, and then download the file setup_cppsim5.exe.
To install, simply run setup_cppsim5.exe in Windows (i.e., double-click on setup_cppsimb5.exe in
Windows Explorer) and follow the instructions. To run Sue2 or CppSimView, click on their
respective Windows icons once the installation process has completed and Windows has restarted.

Known Bugs

1)

2)

3)

4)

5)

Some computers require installation of the Microsoft Visual C++ 2008 Redistributable
Package (x86) in order to run NGspice. This is a small set of DLL files, and is easily
downloaded and installed directly from Microsoft's website at:
http://www.microsoft.com/download/en/details.aspx?displaylang=en&id=29

As in keeping with SPICE conventions, the first letter of a schematic element must be
appropriately specified (i.e., R for resistor, C for capacitor, VV for voltage source, etc.).
CppSim automatically provides the correct value of this letter when creating a new instance —
be sure not to change that first letter!

True library support is lacking in Sue2 right now (i.e., name clashing occurs between cells of
the same name even though they may be in different libraries). This issue is taken care of by
using the Import and Export tools of Sue2.

The undo command in Sue2 is broken.

Sometimes the history file of CppSimView gets corrupted and does not allow CppSimView to
start. If so, within Windows Explorer, go to the SimRuns directory associated with the current
cell of Sue2, and then erase the file called cppsimview_history.mat within that directory. As
an example, if Sue2 is currently displaying cell sd_synth fast within library
Synthesizer_Examples, then delete the file cppsimview_history.mat located within directory
c:/CppSim/SimRuns/Synthesizer Examples/sd_synth_fast (where c:/CppSim corresponds
to the base directory location that CppSim was installed at, and may be different for different
machines).

The Basics of Running NGspice Simulations

To explain the basic operation of running NGspice within the CppSim framework, let us now walk
through an example using the Sue2 as the schematic editor and CppSimView as the simulation
viewer.

A. Running an NGspice Transient Simulation in Sue2

e Open up Sue2 by clicking on its icon on the Windows Desktop. You should see a window
similar to what is shown below. Note that there is one schematic listbox and two icon
listboxes, each of which lists cells from the library that is selected by pushing their top button
as indicated by the figure.

select
library

T

Siitheser Exprpiples
overall_sd_synth] tivo_ppipt_mc
=d_synth
sd_synth_electriga
sd_synth_fast
sd_synth_fast_simbilink
sd_synth_tristate]
sd_synth_tristate] fpst
sd_synth_tristate] |
sd _svnth two pdgirg mo L

I~
o
&

1
o

— Y
CqpsimModules

accum_and_dug E

accumulatar

add2

andz2

and3

ascii_store

bang_bang_detdcior

ch_pump

clioper =
v devices

flag =
global

inline_cmd

inout

input

name_net

name_net_s

output

e Select the Spice library by clicking on it in the top portion of the schematic listbox as
illustrated below

SUE2: no_name (schematic) --- this is a scratch celk: rename to desired cell name using "save as’ co

File Window Edit Tools Doc \Welcome to Sue2 (version 1.0) - see the COPYING file for details on copyright/licensing issues

S EELLE TN
sd_synth
sd_synth_electrical
sd_synth_fast
sd_synth_fast_simulink
sd_synth_tristate
sd_synth_tristate_fast
sd_synth_tristate_int_sd_fast
sid_svnth twn noint_mod

=

CppSimModules

accum_and_dump |
accumulator

add2

and2

and3

ascii_store
bang_bang_detector
ch_pump

clioper

L

dewces|

flag

global
inline_cmd
inout

input
name_net
name_net_s
output

\ A4

e Select the spice_examplel schematic by clicking on it in the schematic listbox.

SUE2: no_name (schematic) -—- this is a scratch celk: rename to desired cell name using "save as’ co

=10l x|

File Window Edit Tools Doc \Welcome to Sue2 (version 1.0) - see the COPYING file for details on copyright/licensing issues

-

Spice

bus_terminals_sxample
cocs

gm_on_ld_test
hsp_example5
JEEm RN Iy
spice_example1
LIRS N
spice_example3

spice examnled ﬂ

uy
. ®

CppSimModules

accum_and_dump =
accumulatar

add2

andz2

and3

ascii_store

bang_bang_detector

ch_pump

clioper ﬂ

flag

global
inline_cmd
inout

input
name_net
name_net_s
output

e Sue2 should now display the spice_examplel schematic as shown below. Note that the

NGspice Simulation menu item is obtained by clicking on Tools (circled in

red below).

SUE2Z: spice_examplel (s-hematic) --- C/CppSim/CppSimShared/Suelib/Spice/spice_examplel.sue

=10l x|

File Window E®it

Library Manager

CppSim Simulation

VopSin R s m mm g

NGspice Simulation

TENmma aEEEEE
Create spice netist N

Create spice netlist (with top sub)

w=1.0u
1=0.13u

gnd gnd

geo=0

N=12u

gnd

Spice

bus_terminals_example
coes

gm_on_ld_test
hsp_examples

inverter
spice_exampled
spice_example2
spice_example3

-

snice examnled 1

CppSimModules

accum_and_dump -
accumulator

add2

and2

and3

ascii_store

bang_bang_detector

ch_pump

-

clioper =1

devices

flag -
global

inline_cmd

inout

input

name_net

name_net_s

output

Clicking on the NGspice Simulation menu item, as shown above, yields the NGspice Run
Menu as shown below. Note the Netlist/HSPC/NGspice button, which is circled in red.

ff NGspice Run Menu --- celk: spice_examplel, library: spice

Closel Kill Run

L}
.
Synchronizel Edit Sim Filel View Log Filel MNetlist Only’l NelIiSUHSF‘CI N

Sim File: test.hspc — |

=10l x|

‘-llllllll....

etist/HSPC/NGspice | 4

Result: =+ cell: spice_example1 (Library: spice) === -
=

= 3l

e Run an NGspice simulation on the spice_examplel cell by clicking on

the

Netlist/HSPC/NGspice button shown in the above figure. You should see some messages in
the window along with an additional simulation window that eventually closes, and then

finally the window should appear as shown below.

7 NGspice Run Menu --- celk: spice_examplel, library: spice - |I:I|i|

Synchronizel Edit Sim File | View Log File | Netlist Only | NetlisttHSPC NetlisUHSPC!NGspicel

Sim File: test.hspc — |

Result: [« |

Kill Run

Close

Running HSPC on cell 'spice_example1' completed with no errors
> H3SPC output location: C/CppSim/SimRuns/spice/spice_exampletl/simrun.sp

—= Qutput directory: C:/CppSim/SimRuns/spice/spice_example

B S S] DDHE" B S S s]

Mote: run files contained in directory:
C/CppSim/SimRuns/spice/spice_exampled

|

|-l4]

e To view results of the simulation, click on the CppSimView Icon on the Windows Desktop.
You should see a new window appear as shown below.

-} CppSimView --- Library: Spice, Celk: spice_examplel - |E||5|

Save to .epsFile Save to .figFile Save to Clipboard ‘Zgoa'l‘ -—l:n:iiri—lgnle:.c:,prpfiT‘—‘ EEEEy, .,
@ tasthspc 8 O MoOutputFile $ & ¢ MoModes $ O plotsigf.) ' messages

Synchl Load |

Load and Replot |
Flat |
Reset Node List |

Back | Farward | ;I
! |

—— CppSim: C++ Behavioral Simulation sWritten by Michasl Perratt (ks cppsim. com)

e To view simulation results for a given signal within the spice_examplel cell, you need to first
choose an appropriate Output File and then the Node that the signal is associated with. In the
window shown above, first click on the No Output File radio button, and choose simrun.raw
as the output file. Next click on the No Nodes radio button, and then double-click first on
node in and then on node out. The resulting CppSimView window should appear as shown
below, and the Plot Window should show the corresponding signal waveforms.

-} CppSimView --- Library: Spice, Celk: spice_exanrp'21

(o]]
Save to .epsFile Save to .figFile Save to Clipboar® | Zoom §— CppSimHome: c:/CppSim —
4

" testhspc ** simmun raw * nodes plotsigl.) ' messages

Synch | Load | TIME LI
in
nd
Load and Heplotl n
Pot | |fn

Reset Mode List | i_wsup
Back | Forwardl ﬂ

|| plotsigic'inout’ ‘

CppSlm C++ Behavioral Simulation —— ‘Written by Michael Perrott (hitp:/fwww.cppsim.com)

e Now click on Zoom (circled above in red). The resulting Plot Window should appear as
shown below.

-} Plot for CppSimView --- Library: Spice, Celk: spice_e o]

800 900

500 600 700 800 900

Dad nd [R)eplot ds)

e Consider clicking on different buttons in the Plot Window to zoom into portions of the signals
and perform various other operations. One convenient feature is the use of the arrow keys on
your keyboard to zoom in, zoom out, and pan left and right. The down arrow key zooms in,
the up arrow key zooms out, and the left and right arrow keys pan left and right, respectively.

B. Editing Schematic Level Module Parameters

There are two approaches to specifying schematic level parameters when running NGspice within the
CppSim framework — one can either specify parameter values in the schematic or within the
simulation file (i.e., test.hspc for the example discussed above). We will discuss each of these
approaches in this section.
e Within the Sue2 schematic window, double-click on a given module such as MO (circled in
red in the figure below). You may then edit the model parameters and then click on Done to
save their new values.

SUEZ: spice_examplel (schematic) --- C/CppSim/CppSimShared/Suelib/Spice /spice_examplel.sue -|E||5|
Elle Window Edit Tools Doc [selected: nmos RO MO #1001 |

-

Spice
bus_terminals_sxample
coes
gm_on_ld_test
hsp_examples

nnnnnnnn

=10] x|
Cell: nmos
Library: spice

name (MO

m 1
w 1.0u

[0.13u
geo |0

CppSim —-| EC '.| Createl De i'.il

Done | Cancel |

e To change parameters within the simulation file (i.e., test.hspc), first change the w parameter
of transistor MO to the value w_gl as shown below and then click on the Done button.

ff nmos =10 x|
Cell: nmos
Library: spice
name |0
m ' N W
wawagl
[0.13u
geo |0
CppSim —l| Ec '.| Createl De e‘.el
Done | Cancel |

Whenever you make changes to a schematic, the title bar will show **MODIFIED** as shown in
the figure below. Be sure to save the schematic before running simulations by typing Ctrl-s or
clicking on Save within the File menu, and verify by checking that the **MODIFIED** text goes
away in the title bar.

guuEEEREEREEmy,
SUE2: spice_example. (schematic) ** MODIFIED ** --- C:/CppSim:<ppSimShared/SuelibfSpice spice_exa

- =
File Window Edit Tools D% fresmmmea®™

~0jx]

Spice |~
bus_terminals_example
cces

gm_on_ld_test

hsp_exampled

inverter

spice_example

spice example2 I

CppSimModules
accum_and_dump =
accumulator
add2
and2
and3
ascii_read
ascii_read_clocked -

devices

flag =
global
inline_cmd

gnd gnd inout
input —
name_net
name_net_s x|

Now click on Netlist/HSPC/NGSpice in the NGspice Run Menu as shown below. You will find
that the ngspice simulation window appears but that the simulation does not go forward.
Unfortunately, there is no prompt telling you this, so you must simply pay attention to this sort of
issue happening. However, note that the NGspice Run Menu window will often alert you to error
messages, so be sure to examine it after every run.

 NGspice Run Menu --- celk: spice_examplel, library: spice - |EI|5|

“.-lllllll....

Closel Kill Runl Synchronizel Edit Sim File | View Log File | Netlist Onlyl NetIiSUHSF{?.r NetIiSUHSPCJ’NGSpi{:eJ.:

.
Sim File: testhspc — |

Result: [«

Running HSPC on cell 'spice_examplel' completed with no errors
—>= HSPC output location: C/CppSim/SimRuns/spice/spice_examplet/simrun_sp

-—= Qutput directory: C/CppSim/SimRuns/spice/spice_examplet

B] DDnE" e]

Mote: run files contained in directory:
C:/CppSim/SimRuns/spice/spice_example

il

=l4]

10

Now click on Quit button within the ngspice simulation window shown below. This will stop
the simulation and allow you to move forward in your investigation of what went wrong.

_loix
363633k ;I
*¥% nospice—23 ;. Circuit level simulation program

¥% The T. C. Berkeley CAD Group

** Copyright 1985-1994, REegent= of the UTniver=zity of California.

Plea=ze get wvour ngspice manual from http: -~ ngspice.sourceforge. net-docs htnl
Plea=ze file wvour bug—-report=s at http: “ngspice.=sourceforge.net-bugrep html
** Creation Date: Jun 4 2011 15:26:05

WX X

Batch mode

Simulation output goes to rawfile: =imrun.raw
Comment=s and warnings go to log—file: =imrun.log

| PRLLLEYNIN
- - -

|simrun.sp |—ready— ;‘ Quit |'

3
“EeEE"

Now click on View Log File in the NGspice Run Menu as shown below. You will find that an
Emacs editor session begins which displays the text file simrun.log.

 NGspice Run Menu --- celk: spice_examplel, library: spice - |EI|5|
gunEEENy n,

Closel Kill Runl Synchronizel Edit Sim Fili!] View Log File ['Netlist Only | MNetlisttHSPC NetIiBUHSPCJNGspicel
Emmm

Sim File: testhspc — |

Result: [«

Running HSPC on cell 'spice_example1' completed with no errors
—= HSPC output location: C/CppSim/SImMRUns/spice/spice_examplet/simrun sp

—>= Qutput directory: C/CppSinVSimRuns/spice/spice_example

B S] DDHE' e T

Mote: run files contained in directory:
C:/CppSim/SimRuns/spice/spice_example1

=l

|=l4]

In examining the simrun.log file shown below, we see that the error is that the parameter W_GL
is undefined. This is the very same parameter w_gl that we entered into the schematic earlier, and
the issue is that we never chose its value. We will do this by editing the test.hspc simulation file,
as described in the next step.

11

=10] x|

T-"‘C:,-'Cppﬁm,-‘ﬁmﬂunsfspice,-‘spice_mmplel,\" {

File Edit Options Buffers Tools Help

Note: can't find init file.

ice eXamplel! #F#Fw

Circuit: *%#%%% gpice netlist for

132, .new internal line no.: 12:

PR TSR T R

, hew internal line no.: 12:
tute

I Placeholder

[Fundamental) ——-L1--4l11

———— =imrun.log
and its gos

For information about the GNT Project

Now click on Edit Sim File in the NGspice Run Menu as shown below. An Emacs window that

[]
displays the file test.hspc simulation file will appear.
-0 |
Py 7 .
Closel Kill Run Synchrc‘llzel Edit Sim File r\.#ew Log Filel Metlist Onlyl MetlistHSPC NetlisUHSPCINGspicel
Sapgguun®’
Sim File: test.hspc —l|
Result: B
----------------- running hspe ——————-————
Running HSPC on cell 'spice_example1' completed with no errors
-—» HSPC output location: C/CppSim/SimRuns/spice/spice_examplel/simrun.sp
—————————————— running ngspice program —————
—> Qutput directory: C./CppSim/SimRuns/spice/spice_example1
Done!
Note: run files contained in directory:
C:/CppSim/SimRuns/spice/spice_example1 L
il)
e Within the Emacs window as shown below, edit the test.hspc simulation file to include the line:

Jparam w_gl=1.0u
Make sure that you save the file. You have now specified the value of w_gl, and so click on

Netlist/HSPC/NGSpice in the NGspice Run Menu to re-run the NGspice simulation. This time
the simulation should complete and you can click Load and Replot within the CppSimView
window to view the updated results (which should look identical to the previous results).

12

3 C:/CppSim/SimRuns Spice /spice_examplel [testhspe -0l x|

File Edit Options Buffers Tools Help

and Bipolar models
14 . mod!

Jinclude LA LS.

¥ Temperature
.Lemp 25

Parameters

Zimulation Options
ns delmax=5p relwv=l1le-6 reli=le-6 relmos=le-& method=gear

* SJimulation Paramweters (.tran or .&ac or .doc statements)

C. Editing Simulation Files (i.e., test.hspc files)

In the above exercise, you received some brief exposure to Simulation Files, but it will important for
you to better understand the role of these files going forward. While the Sue2 schematic describes the
overall circuit topology that is to be simulated, additional simulation specifications must be provided
to NGspice such as the type of analysis to be performed, the parameters of that analysis (such as the
time duration of a transient simulation as performed in the previous example), the value of global
parameters used within models in the schematic (as discussed in the previous section) as well as
global nodes, and many other items which are described in further detail within the NGspice, HSPC,
and transistor model documentation located under the Doc section of the Sue2 window as well as:

e NGspice Documentation: c:/CppSim/CppSimShared/NGspice/doc/ngspice23-manual.pdf
e HSPC Documentation: c:/CppSim/CppSimShared/Doc/hspc.pdf
e Berkeley BSIM4 Model Documentation:
c:/CppSim/CppSimShared/NGspice/doc/BSIM464_Manual.pdf
e ASU Predictive BSIM4 Model: http://ptm.asu.edu/
0 Y.Cao,T. Sato, D. Sylvester, M. Orshansky, C. Hu, "New paradigm of predictive
MOSFET and interconnect modeling for early circuit design," pp. 201-204, CICC,
2000

13

In this section we will touch on key points related to the above documentation, but there are many
important details in the above documents which will merit their examination. Note that the CppSim
framework allows you to specify several simulation files (such as test.hspc, test_ac.hspc, etc.) in
order to perform different types of analysis on a given schematic. However, in this document, we will
focus on editing the same simulation file to perform different types of analysis.

Continuing with the example of the previous section, if you closed the Emacs window
containing the test.hspc file, then click on the Edit Sim File button within the NGspice Run
Menu window. The test.hspc simulation file should appear within Emacs as shown in the
previous section. There are several key points to make of this file:

0 Lines that start with “*” are comments, and are ignored by NGspice,

0 Lines that start with >’ are HSPC commands, and are used to augment the normal
functions provided by NGspice. One should examine the HSPC documentation
indicated above for further information on these commands.

o0 Lines not falling under the above two categories are native NGspice commands. One
should examine the NGspice documentation indicated above for further information on
these commands.

D. AC Analysis Example

The previous sections illustrated the steps involved in performing transient simulations with NGspice.
Continuing with the above example, we will now focus on performing AC analysis through
modification of the simrun.hspc simulation file.

Continuing with the example of the previous section, if you closed the Emacs window
containing the test.hspc file, then click on the Edit Sim File button within the NGspice Run
Menu window. Make the following modifications to the test.hspc file within the Emacs
window (note that the final version of the file is shown below):
0 Uncomment the line: Vinin 0 0.5 ac=1
= This specifies an input voltage source to the circuit with AC magnitude of 1
o Comment the line: .tran 10p 1u
= This removes transient analysis from being performed
0 Uncomment the line: .ac dec 10e3 100k 100Meg
= This specifies that AC analysis should take place for 10,000 frequency points
spaced logarithmically from 100kHz to 100MHz
o Commentthe line: > timing 0.0n 0.2n [1/10e6] 0 vsupply
= This removes the HSPC timing information for the input signal that was used
for the transient simulation
o Commenttheline: >inputinfset0011101100010R]
= This removes the HSPC input signal that was used for the transient simulation

Completion of the above commands yields the file shown below. Be sure to save this file.

14

'-f"'C:,fCppﬁmfﬁmRunsfSpice;‘spice_mmplelﬂﬁﬂm) | ﬂ

File Edit Options Buffers Tools Help
.param w_gl=1.0u

global wdd gnd

#xwE® DC Wolt SJources

6 relmos= : SHear
[.tLran or .ac or
raupnlel 0.001

Jholas snlaatt cYVincaeo 10e3 100k 100Meg

#FF*F Have operating point information sent to log file [(simrun. log)

% .op
FEREEEE Digital Input Stimulus
Tirtedrg - efoclt § 0 0 timdnge delav rise/fall time period v w whigh
- Ciming 0O
"get. 01 101

in n0 nl nZ
.probe [@Bmil[id]

Now click on Netlist/HSPC/NGspice in the NGspice Run Menu as shown below:

i WGspice Run Menu --- celk: spice_examplel, library: spice ;@J

SELLLLLLE T

Close‘ Kill Run ‘ Synchronlze‘ Edit Sim Flle‘ View Log F|Ie| MNetlist Only‘ NetllsUHSFfFNetIlsUHSPCfNGsplceI

"sapgummusnt®
Sim File: testhspc —

Result: B
-—-= Qutput directory: C:/CppSim/SimRuns/spice/spice_examplel

B A 3 10 =) Bl

C:/CppSim/SimRuns/spice/spice_example

MNote: run files contained in directory: <‘
I

l

If it is already running, exit out of CppSimView. Then restart CppSimView by clicking on
the CppSimView icon on the Windows desktop. Click on either the nodes radio button
(circled below in red) or on the Load button (whichever is appropriate) to load in the signals
from this new run in CppSimView. You should see a list of node names as shown in the
figure below.

15

-} CppSimView --- Library: Spice, Cell: spice_examplel o 4
Save to .epsFile Save to .figFile Save to Clipboard Zoom — CppSimHome: c:/CppSim =00

: *" .
eummal testhspc " simrun.raw § &y : " plotsigl..) " messages
59’“‘;! S|} ~recUENCY
2asaslf,
nd
Load and Replat | "
e | ||"@
out
Reset Made List | i_wsup
Back | Forwardl ;l

“ plotsigix'in;out) ‘

—— CppSim: C++ Behavioral Simulation Wirittan by Michael Perrott (hitp:iww cppsim.com)

In the CppSimView window, double-click on nodes in and out. You should see a figure
similar to what is shown below (note that the Zoom button in the main CppSimView window
shown above toggles on and off the buttons in the plot window shown below). Note that
CppSimView automatically takes the magnitude of each signal (i.e., abs(in) and abs(out))
since they are complex signals in frequency domain. Note also that the magnitude of in is
equal to 1 as defined in the Simulation File above (i.e., Vin in 0 0.5 ac=1)

-} Plot for CppSimView --- Library: Spice, Celk: spice_e

Frequency (MHz)

For AC analysis, it is often easier to view the frequency axis in a logarithmic fashion, and to
plot magnitudes in terms of dB. In general, you can changing plotting functions from abs(.) to
ph(.) (i.e., phase of the signal) or db(.) (i.e., magnitude in dB) by simply overwriting their
value in the CppSimView plot expression section at the very bottom of the main window of
CppSimView. To view the frequency axis in logarithmic fashion, you need to add a ‘logx’
specification. As an example, modify the CppSimView plot expression as shown below, and
then push on the Load and Replot button to update the plot.

16

-} CppSimView --- Library: Spice, Celk: spice_examplel o] 4|
Save to .epsFile Save to .figFile Save to Clipboard Zoom — CppSimHome: c:/CppSim —
" testhspc " simrun.raw & nodes " platsigr..) " messages

R N e =]

o™ " ST] L
Load and Replot ‘: 210
Tasanns’
Flat
_ e |
Reset Node List | i_vwsup

Back | Forwardl ;I

ILpIDtSlg «,'abs(in;abslout), Il:ngx') "“

CppSim: IC++ Behavioral Simulation

Py 4

YWhritten by Michael Perrott (http:/ s cppsim.com)

e After you complete the commands above, you should see a plot window similar to what is
shown below.

Frequency (MHz)

E. DC Analysis Example

The previous section illustrated the steps involved in performing AC analysis with NGspice.
Continuing with the above example, we will now focus on performing DC analysis through
modification of the simrun.hspc simulation file.

e Continuing with the example of the previous section, if you closed the Emacs window
containing the test.hspc file, then click on the Edit Sim File button within the NGspice Run
Menu window. Make the following modifications to the test.hspc file within the Emacs
window (note that the final version of the file is shown below):

17

0 Commentthe line: .ac dec 10e3 100k 100Meg
= This removes AC analysis from being performed
0 Uncomment the line: .dc Vin 0.0 ‘vsupply’ 0.001
= This specifies that DC analysis should be performed by sweeping the Vin
supply from 0 to vsupply (specified as 1.3V in the .param vsupply=1.3
statement in the test.hspc file) in increments of 0.001V.
0 Uncomment the line: . probe @m1[id] @m1[gm] @m1[gds] @m1[cgs] @m1[cgd]
@ml[gmbs]
= This specifies that additional signals should be saved for viewing in
CppSimView which correspond to various parameters of CMOS transistor M1.

Completion of the above commands yields the file shown below. Be sure to save this file.

77 C:/CppSim/SimRuns /Spice spice_examplel [test hspc o =] |

File Edit Optons Buffers Tools Help

.global wdd gnd

ation Options
.0ptions delmax=5p relv=le-6 reli=le-6 relmo3=1le-¢

FEEFT Simulation Parameters (.tran or .ac or .do Statem
ibp 1u
n 0.0 rgupply!' 0,001

100k 100Meqg

[Siwmrun. log)

ffall_time period wlow whigh

T = Input: > input nodens to01101 ... E]
> input in [set 00 1 1 1 01 10

electively

frol[eocgd] Erml[ombhs]

——iUnix)-- test.hspc

Now click on NetlisttHSPC/NGspice in the NGspice Run Menu to run the NGspice
simulation.

Assuming CppSimView is still open from the previous section, click on the Load button to

load in the signals from this new run in CppSimView. You should see a list of node names as
shown in the figure below.

18

.} CppSimView --- Library: Spice, Cell: spice_examplel o 4

Save to .eps File Save to .figFile Save to Clipboard Zoom — CppSimHome: c:fCppSim —

.
S_l,lnchl
N g gu®l

" plotsigl.) " messages

* nodes

 simrun.raw

" testhspc

Load and Replat |
Plat |

Reset Mode List | [-
1 _id

ml_gm
Back | Forwardl ml_gds =l

“ plotsigx'abs(in);abs(out)'logx") ‘

Written by Michael Perrott (http:/vwessw. cppsim.com)

—— CppSim: C++ Behavioral Simulation

)

Save to .epsFile Save to .figFile Save to Clipboard Zoom — CppSimHome: c:/CppSim —

In the CppSimView window, click on the Plot button indicated above. Unfortunately, the
signals are plotted in db(.) formate with logarithmic x-axis, which is not appropriate for DC
analysis. Click on the Reset Node List button to reset the plotting function as shown below.

CppSimView --- Library: Spice, Celk: spice_examplel o] 4|

Synchl Load | WOLTAGE

" testhspc " simrun.raw & nodes " platsigr..) " messages

in

PL4

Flot l nZ
3 | aut
Reset Node List I “ I_vsup

U Emmn m1_|d

ni
Load and Replot | n

ml_gm
Back | Forwardl ml_gds d|

plotsigix,'abs(inyabs{ouf)", logx])

CppSim: C++ Behavioral Simulation —— ‘Witten by Michael Perott (hitp:fAww.cppsim. com)

-} CppSimView --- Library: Spice, Celk: spice_examplel - |E||i|
Save to .epsFile Save to .figFile Save to Clipboard Zoom — CppSimHome: c:/CppSim —

Synch| Load | YOLTAGE

" testhspe simrun.rawy * nades plotsigl..) ' messages

Load and Replot |
Flat |

Back | Fomnward |

plotsigix 'nodes") . ot

%
CppSlm C++ Behavioral Simulation —— ‘Written by Michael Perrott (hitp:/fwww.cppsim.com)

In the CppSimView window, double-click on nodes in and out. You should see a figure
similar to what is shown below (note that the Zoom button in the main CppSimView window
shown above toggles on and off the buttons in the plot window shown below). The x-axis

19

corresponds to the voltage sweep value, and the plots reveal how both in and out vary as a
function of this voltage sweep. You might consider looking at other signals, as well.

-} Plot for CppSimView --- Library: Spice, Celk: spice_e

Simulated Signals for Cell: spice_example1, Lib: Spice, Sim: test.hspc

0.6 0.8
Voltage (Volts)

F. Noise Analysis Example

The previous section illustrated the steps involved in performing AC analysis with NGspice.
Continuing with the above example, we will now focus on performing noise analysis through
modification of the simrun.hspc simulation file.

e Continuing with the example of the previous section, if you closed the Emacs window
containing the test.hspc file, then click on the Edit Sim File button within the NGspice Run
Menu window. Make the following modifications to the test.hspc file within the Emacs
window (note that the final version of the file is shown below):

o Commentthe line: .dc Vin 0.0 ‘vsupply’ 0.001
= This removes DC analysis from being performed
0 Uncomment the line: .noise v(out) Vin dec 10e3 100k 100Meg
= This specifies that noise analysis should be performed by calculating the
voltage noise spectrum (i.e., V*/Hz) at the out node for 10,000 frequency points
spaced logarithmically from 100kHz to 100MHz. The input-referred voltage
noise spectrum should also be calculated as referenced to the output of signal
source Vin. Note that Vin must be a signal source and not a node, whereas out
corresponds to a node and not a signal source.
0 Commentthe line: . probe @m1[id] @m1[gm] @m1[gds] @m1[cgs] @m1[cgd]
@ml[gmbs]
= This removes plotting for these signals.
0 Uncomment the line: .probe inoise_spectrum onoise_spectrum

20

= This specifies the input-referred (at the output of signal source Vin) and output-
referred (at node out) noise spectrums should be saved for plotting.

Completion of the above commands yields the file shown below. Be sure to save this file.

77 C:/CppSim/SimRuns /Spice spice_examplel [test hspc o =] |

File Edit Optons Buffers Tools Help

Win in 0 0.5

Jimulation Option:
.options delmwmax=5p relw=le-6 reli=le-6

soion” Paraneterss o hran or

wlout)] VWin dec 10e3 100k 100HMeg

erating polnt 1nformwation sent to log file (sSimrun. log)

ut
Brol[gm] [iy =] Bml[cgd] Eml[omwbs]

ectrum onois

test.hspco

e Now click on Netlist/HSPC/NGspice in the NGspice Run Menu to run the NGspice
simulation.

e Assuming CppSimView is still open from the previous section, click on the Load button to
load in the signals from this new run in CppSimView. You should see a list of node names as

shown in the figure below.

21

-} CppSimView --- Library: Spice, Celk: spice_examplel - |E||5|

Save to .epsFile Save to .figFile Save to Clipboard Zoom - CppSimHome: c:/CppSim —

sw"mma] " tasthspc sirnrun.ram * nodes plotsigl.) ' messages

*
S E; I. Load ‘L rRECILERNCY
nmu

inoise_spectrum

Load and Heplotl onoise_spectrum
Flot |
Reszet Mode List |

Back | Farward | ﬂ

|| plotsigic'inout’ ‘

CppSlm C++ Behavioral Simulation —— ‘Written by Michael Perrott (hitp:/fwww.cppsim.com)

e In the CppSimView window, click on the Plot button indicated above. Unfortunately, an
error occurs since the signals specified in the plot expression are no longer included for
plotting (note that only inoise_spectrum and onoise_spectrum are valid signals for noise
analysis with NGspice). As such, click on the Reset Node List button to reset the plotting
function as shown below.

-} CppSimView --- Library: Spice, Celk: spice_examplel - |E||5|

Save to .epsFile Save to .figFile Save to Clipboard Zoom - CppSimHome: c:/CppSim —

" testhspc sirnrun.ram * nodes plotsigl.) ' messages

5y nchl Load | FRECQILEMCY

inoise_spectrum

Load and Heplotl onoise_spectrum
Flat |
. n
Reset Node List I “
&
T
Back | Forwardl ;I

|| plotsigi: inout) ‘

¥

} CppSimView --- Library: Spice, Celk: spice_examplel =10 =]

L 4
A d

—— CppSim: C++ Behavioral Simulation sWritten by Michasl Perratt (ks cppsim. com)

Save to .epsFile Save to .figFile Save to Clipboard Zoom — CppSimHome: c:/CppSim —

 testhspc " sirnrun ram * nodes platsigr.) " messages

Sy ”Chl Load | FREQIEMNCY

inoise_spectrum

Load and Heplotl onoise_spectrum
Flat |

Back | Forwardl ;I

3..| plotsigix 'nodes" -“‘ ‘

CppSim: C++ Behavioral Simulation

YWhritten by Michael Perrott (http:/ s cppsim.com)

e In the CppSimView window, double-click on nodes inoise_spectrum and onoise_spectrum.
You should see a figure similar to what is shown below (note that the Zoom button in the main

22

CppSimView window shown above toggles on and off the buttons in the plot window shown
below).

-} Plot for CppSimView --- Library: Spice, Celk: spice_e

x Wﬂlated Signals for Cell: spice_example1, Lib: Spice, Sim: test.hspc

40 50
Frequency (MHz)

e Just as for AC analysis, it is often easier to view the frequency axis in a logarithmic fashion for
observing noise spectra. To view the frequency axis in logarithmic fashion, you need to add a
‘logx’ specification. As an example, modify the CppSimView plot expression as shown
below, and then push on the Load and Replot button to update the plot.

-} CppSimView --- Library: Spice, Celk: spice_example1 o] 34
Save to .epsFile Save to .figFile Save to Clipboard Zoom -— CppSimHome: c:/CppSim -—

 testhspc " sirrun.raw * nodes plotsigl.) ' messages

_Smeh || Load || ERpquEncy =]

inoise_spectum

. = "Wy
Load and Replat :

RETTTTLL
Plat |
Reset Mode List |

Back | Fonward | ;I

resnnnnnl 000N RENENNNNRRNNRY S
&'.14 EIDtsig[)-L'abs(inDise_speI:Trum);abs(Dnuise_spedrum)','lugx')
™

CppSim: "C++ Behavioral Simulation

spectum

LA

Ty
l-“’

Witten by Michael Perroft (hitp: /s cppsim.com)

e After you complete the commands above, you should see a plot window similar to what is
shown below.

23

-) Plot for CppSimView --- Library: Spice, Celk: spice_e

Freguency (MHz)

Using Matlab or Octave with NGspice

While using the NGspice Run Menu and CppSimView is a convenient interface for beginners,
more advanced users may want to consider running their simulations and doing post-processing
directly in Matlab or Octave. To use NGspice within Matlab or Octave, users simply need to add
the Hspice Toolbox commands (which come with the standard CppSim installation) to the Matlab
or Octave path. This operation is performed by typing the following in the Matlab or Octave
command window

addpath(‘c:/CppSim/CppSimShared/HspiceToolbox")

Note that c:/CppSim should be replaced by the actual path you chose for CppSim during the
installation.

A. Basic Operations

e As an example of running NGspice in Matlab, go to the simulation directory for the cell
spice_examplel by typing (in the Matlab command window):

cd c:/CppSim/SimRuns/Spice/spice_examplel

24

_ioix

File Edit Debug Desktop Window Help
]ﬂ lﬁ | * % @ g |ﬁ ﬁ EFI | @' ||l::‘l.CppSim‘-SimF‘.uns‘-SpiI:E‘n,spi-:E_E};I;I]

Shortcuts 2] How to Add] What's Mew

@ Mew to MATLAB? Watch this Video, see Demos, or read Getting Started, x

»» addpath ('c: /CpopSim/CppSimShared/Hepicetoolbox')

>> cd c:/CppSin/Sinkuns/Spice/spice examplel

di513ﬂ1 oVRE i

Again, you must substitute the proper path that you chose for CppSim in place of c:/CppSim.
If you type Is at the Matlab prompt, you will see the many files produced by previous
simulations. The simulation file, test.hspc, should and must be present in order for the steps
that follow to work.

Once you are in the above directory, type
ngsim

at the Matlab prompt — this will run HPSC and then NGspice by default on the test.hspc file
located in the current directory. The ngsim script will use the current directory information to
determine the name of the cell and library (the current directory is the cell name (i.e.,
spice_examplel), and the next directory up is the library name (i.e., spice)) and then use this
information to automatically netlist the Sue2 cell and then run the simulation. When
completed, the Matlab command window should appear similar to the following figure:

o

File Edit Debug Desktop Window Help
hﬂ lﬁ | * % @ 7 ™ |ﬁ @ ﬂ | '@' ||-::‘l.CppSim\SimRuns‘nSpice‘n,spice_mj;l]

Shortcuts 2] How to Add 2] What's New

@ Mew to MATLAB? Watch this Video, see Demos, or read Getting Started, x

Spice netlisting of cell 'spice examplel' completed with no errr:ur:;l
. running hspc ...
. running HGspice ...

BrmrxasdeRarrsd NEzpice run has completed #essrssserasrris
fx w -
Rl | B

diﬁladl GWVH A

25

(Note: if one desires to run NGspice on a different simulation file, such as test2.hspc for
instance, then type the following command at the Matlab prompt: ngsim test2.hspc)

Once the run has completed, load the signals in file simrun.raw into Matlab by typing
x = loadsig('simrun.raw");
You can then view the signals contained within this file by typing
Issig(X);
Finally, plot the signals inoise_spectrum and onoise_spectrum by typing
plotsig(x,'abs(inoise_spectrum);abs(onoise_spectrum)’, ‘logx");

e A key advantage of using Matlab or Octave is the greatly increased flexibility it offers for
doing post-processing. In particular, one can create Matlab scripts to load in NGspice output
files (i.e., simrun.raw) and then perform sophisticated processing on the signals they contain.
To do so, one needs to turn signals embedded within NGspice output files into Matlab signals.
This is achieved for signal inoise_spectrum in the above example by typing

inoise = evalsig(x,’inoise_spectrum’);

in Matlab. The above operation allows one to now directly access the data values of
inoise_spectrum in Matlab. For instance, to view the first ten samples of inoise_spectrum,

simply type
inoise_spectrum(1:10)
in Matlab.

It is worthwhile to examine the Hspice Toolbox manual, which is provided as the PDF
document:

0 c:/CppSim/CppSimShared/Doc/hspice_toolbox.pdf
for more information on the Matlab commands it offers related to viewing and post-
processing.

B. Running Parameter Sweeps using Matlab/Octave Scripting

We now consider an example of using a Matlab script to perform a parameter sweep by performing
multiple Ngspice simulations from the script

e As a first step, go to the cell gm_on_id_test by clicking on its schematic from the schematic

listbox menu in Sue2 as indicated below. Note that you need to make sure that the library for
the schematic listbox is Spice as shown in the figure.

26

SUE2: spice_examplel (schematic) --- C:/CppSim/CppSimShared/Suelib/Spice/spice_examplel.sue

=10]

File Window Edit Tools Doc |

w=1.0u

1=0.13u
geo=0 i)
R1 n g0 n1 2 2 P:2.4u
"

0
=
B

100k < M1 2u
M0
w=w_gl 2

1=0.13u
geo=0

gnd

: Spice
bus_terminals_exampl® @ m %
ki NN gy
gm_on_ld_test _@

RE T T g

inverter

spice_example

spice_example2

spice exampled =|

CppSimModules
accum_and_dump =
accumulator
add2
andz2
and3
ascii_store
bang_bang_detector
ch pump =l

devices
flag =
global
inline_cmd
inout
input
name_net
name_net_s

outnut =l

You should now see the schematic shown below, which contains a diode-connected NMOS

transistor fed by a current source.

SUE2: gm_on_Id_test (schematic) --- G/CppSim/CppSimShared/Suelib/Spice/gm_on_Id_test.sue

=10x|

File Window Edit Tools Doc |

BE:-100u
AC: 0

w=w_nmos
1=0:13u
geo=0

gnd

Spice

-

bus_terminals_example
cces

gm_on_ld_test
hsp_examples

inverter
spice_examplel
spice_example2

spice example3

=

CppSimModules

accum_and_dump
accumulator

add2

and2

and3

ascii_store
bang_bang_detector
ch pump

-

=l

devices

flag

global
inline_cmd
inout

input
name_net
name_net_s
output

-

Now go to the simulation directory for the cell gm_on_Id_test by typing in the Matlab

command window:

cd c:/CppSim/SimRuns/Spice/gm_on_Id_test

After typing ‘Is’ in the Matlab command window, you should see the following two files:

27

J MATLAB R2011b

File Edit Debug Desktop Window Help

=10 x|

IEim‘lﬁimF‘.uns‘lSpi::e‘l.gm_on_Id_test j_l [E]

NS s @2 ¢ TR @

Shortcuts [#] How to Add (7] What's New

@ Mew to MATLAB? Watch this Video, see Demos, or read Getting Started,

*» cd c:/Cppiim/SimRuns/Spice/gm on Id test/
» 1s3

Sim gm curves.m
test.hspc

Fx

-

>> |

Rl

| P

4 513rt|

OVH 4

We can examine the sim_gm_curves.m script by typing in the Matlab command window:

edit sim_gm_curves.m

The resulting editor window should appear as follows:

E Editor - G\ CppSim\SimRuns\Spice\gm_on_Id test\sim_gm_curves.m ;|g|5|
File Edit Text Go Cell Tools Debug Desktop Window Help v A x
NCAE|sRR20|o2 - Mesfi|p-80RBBE] 0O]
§*§E§|—|m + | £ x| O,
1= w_nmos = (1:5)*le-&; 4
2= hspc filename = sprintf('test.hspc'):
3
4 — [Jfor i = 1:length(w nmos)
5 — hspc set _param('w_nmos',w nmos (i) ,hspc_filename);
& % when adding lines, must always start with 'hspc addline'
7 % followed by 'hspc addline continued' statements
B - hspc_addline('.param new param = 1' ,hspc filename);
9 - hspc_addline continued('.param new param? = 10' hspc filename);
10 — hspc_addline continued('.param new param3 = 15' ,hspc filename);
11 (= ngsimihapc filename) ;
12 — X = loadsig('simrun.raw'):
13 - if i =1
14 — current = evalsig(x, "CURRENT') ;
15 = end
16 — ml gm(i,:) = evalsig(x,'ml gm'); o
17 — -end
18
= plot (current, ml_gm);
20
| script ln 13 Col 15 [OVR 4

Key commands seen in the above script include:

28

o ngsim(hspc_filename): runs Ngspice with the HSPC file indicated by
hspc_filename.

0 hspc_set_param(param_name, new_value, hspc_filename): this command searches
the HSPC file specified by hspc_filename for a parameter with name param_name
and changes its value to new_value. For the above example, we change parameter
w_nmaos each time before running a new Ngpice simulation using the ngsim
command.

o0 hspc_addline(new_line,hspc_filename): this command adds a new line specified by
new_line to the file indicated by hspc_filename. For the above example, we simply
add the line .param new_param = 1 to the test.hspc file. This is not useful for this
example, but illustrates how the command is used.

o0 hspc_addline_continued(new_line,hspc_filename): this command adds additional
lines beyond the new line created by the hspc_addline command. As many such lines
can added as desired, but the first one must always be hspc_addline with the rest being
hspc_addline_continued. Again, the lines added in this example are not useful here,
but illustrate how the command is used.

Run the sim_gm_curves.m script by typing in the Matlab command window:
clf; sim_gm_curves
where clf clears the Matlab plot window and sim_gm_curves runs the script. You should see

several Ngspice simulation windows pop up and the Matlab command line will appear as
follows when the simulations have concluded:

29

=

File Edit Debug Desktop Window Help
R LRI EEIC
: Shortcuts 2] How to Add (7] What's New
@ Mew to MATLAE? Watch this Video, see Demos, or read Getting Started. x

I;im‘n,SimRuns‘n,'Spice‘ngm_on_Id_test LIJ |

running NGspice ... ;I

R R R R R R NGSpiCE run hﬂs CDIﬂplEtEd o R R ok R R R R R R R R R

—» Changing parameter 'w_nmos' to value "4e-006" in file "test.hst

—> Adding line '.param new param = 1' in file 'test.hspc’

—> Adding line '.param new_param? = 10' in file 'test.hspc'

—> Adding line '.param new param3 = 15' in file 'test.hspc'

Library: Spice, Cell: gm on Id test, Parameter file: test.hspc
netlisting

Spice netlisting of cell 'gm on Id test' completed with no errors
running hspc
running NGspice

R R R R R R R R R R R R HGSpiCE run hElS CUTﬂplEtEd EREREEE R R R R R

—-»> Changing parameter 'w nmos' to value "5e-006" in file '"test.hsg

-> Adding line '.param new _param = 1' in file 'test.hspc'

—> Adding line '.param new param? = 10' in file 'test.hspc'

—» Adding line '.param new_param3 = 15' in file 'test.hspc'

Library: Spice, Cell: gm on Id test, Parameter file: test.hspc
netlisting

Spice netlisting of cell 'gm on Id test' completed with no errors
running hape
running NGspice

R R R R R R R R R R NGspice run has completed R R R R R R R RO R R

Rl (B
4513rt| OR

Further, the Matlab plot window should show the results of the 5 simulations as shown
below:

30

_loix

File Edit View Insert Tools Desktop Window Help

DWW TUDEL- A0

5

x 10

Using Python with Ngspice

To use Ngspice within Python, you simply need to import the Ngspice Data module (which comes
with the standard CppSim installation) by including the following lines in a given Python script:

import ngspicedata module
import os
import sys
if sys.platform == ‘darwin’:
home_dir = os.getenv(""HOME")
sys.path.append(home_dir + */CppSim/CppSimShared/Python’)
else:
cppsimsharedhome = os.getenv(**CPPSIMSHAREDHOME")
sys.path.append(cppsimsharedhome + ‘/Python’)
from ngspicedata import *

The Ngspice Data module provides a class called NgspiceData to allow easy loading of simulation
data into Python, a function called ngsim() to run Ngspice simulations within Python, and some
supporting functions for running parameterized sweeps. While we will show some simple examples
below, one should read the manual CppSim and Ngspice Data Modules for Python that is available
in the Doc menu of Sue2 for further details.

For the Python examples below, it is highly recommended that you download and install the Express
(i.e., free) version of the Enthought Canopy distribution of Python available at:

https://www.enthought.com/products/epd/free/

31

Note that for Windows platforms, you should download the 32-bit version of Canopy. For Mac
platforms (assumed to be 64-bit), you should download the 64-bit version of Canopy. For Linux
platforms, you should download the version that corresponds to your Linux operating system.

A. Basic Operations

As an example of running Ngspice in Python, go to the simulation directory for the cell
spice_examplel by typing the following command in the Canopy Python Editor window

(which we will refer to as the Python prompt):

cd c:/CppSim/SimRuns/Spice/spice_examplel

For the above command, you must substitute the proper path for CppSim in place of
c:/CppSim. If you type Is at the Python prompt, you may see various files produced by
previous simulations. The simulation file, test.hspc, should and must be present in order for
the steps that follow to work. Also, you must have imported the ngspicedata module as
discussed above. The Canopy editor window below summarizes these operations:

@ Editor - Canopy = | Ele S
File Edit Wiew Search Run Jools Window Help
b=
File Browser g X
Filter: |All Supported Files - I
Create a new file
. perrott
4 || RecentFiles
sim_gm_curves.py ISeIectﬁIes from your computerJ
! Python c:\CppSim'SimRuns\Spice\spice_examplel + X
In [13]:
In [14]: sys.path.append(’c:/CppSim/CppSimShared/Python’)
In [15]: from ngspicedata import =
In [16]: cd c:/CppSim/SimRuns/Spice/spice_examplel
c:\CppSim\SimRuns\Spice\spice_examplel
In [17]:
I
Cursor pos 1:1 IP)rthon "

Once you are in the above directory, type

ngsim()

at the Python prompt — this will run Ngspice by default on the test.hspc file located in the
current directory. The ngsim() script will use the current directory information to determine
the name of the cell and library (the current directory is the cell name (i.e., spice_examplel),
and the next directory up is the library name (i.e., Spice)) and then use this information to

32

automatically netlist the Sue2 cell and then run the simulation. The Canopy editor window
displays the result of running ngsim() as shown below:

W Editor - Canopy

‘ - - - . = | Eh |t

File Edit View Search Run Tools Window Help

b=
File Browser g X
Filter: |All Supported Files v
Create a new file
. perrott
4 || Recent Files
sim_gm_curves.py [Select files from your computer]
Python c:\CppSimiSimRuns\Spice\spice_example1l ¢ X

~

In [14]: sys.path.append(’'c:/CppSim/CppSimShared/Python’)
In [15]: from ngspicedata import =

In [16]: cd c:/CppSim/SimRuns/Spice/spice_examplel
c:\CppSim\SimRuns\Spice\spice_examplel

In [171: ngsim{)
Running Ngspice on module spice_examplel (Lib: Spice):

. netlisting ...

Spice netlisting of cell 'spice_examplel’ completed with no errors

. running hspc ...

. running ngspice ...

m

FEERARREREEEEELE Ngspice run has completed RERRREERREEEERAL

In [18]: -

Cursor pos iE 1l [Pﬁhon ']

|8

Note that if one desires to run Ngspice on a different simulation file, such as test2.hspc for
instance, then type the following command at the Python prompt instead of the above:

ngsim(“test2.hspc’)

Once the run has completed, load the signals in file simrun.raw into Python by typing

data = NgspiceData('simrun.raw")

You can then view the signal names contained within this file by typing

data.lssig()

The Canopy editor window displays the results of running these commands as shown below:

33

@ Editor - Canopy

File Edit Wiew Search

Run Tools Window Help

sirn_gm_curves.py

™|
File Browser g X
Filter: |All Supported Files -
Create a new file
. perrott
4 || RecentFiles :

ISEIect files from your computer]

Python

c:\CppSim'SimRuns\Spice\spice_examplel =

x

In [171: ngsim()

. netlisting ...

|
In [19]: data.lssig()
Out[19]: ['TIME',
In [2@]:
Cursor pos 1:1 lPﬁhon ']

In [16]1: cd c:/Cpp5im/SimRuns/Spice/spice_examplel
c:\CppSim\SimRuns\Spice\spice_examplel

Running Ngspice on module spice_examplel (Lib: Spice):

Spice netlisting of cell 'spice_examplel’ completed with no errors

. running hspc ...
. running ngspice ...
FEEEEAEEEREELE Ngspice run has completed FREERELAEEAERAAS

In [18]: data = NgspiceData(' simrun.raw’)

L |

'in*, 'n@', 'n1', 'n2°, ‘out’', "i_wvsup']

e The signals in and out are loaded into corresponding Python Numpy arrays as follows:

vin
vout

= data.evalsig(‘in’)
= data.evalsig(‘out’)

One can then perform post-processing or plotting of the above signals in Python as desired. As
an example, one can plot the out signal by using the following commands:

from pylab import *

plot(vout)

These commands are also shown in the Canopy editor window below:

34

S S D =")
F

ile Edit View Search Run Tools Window Help

By= ‘ |
Browser & Xl |
ter: | All Supported Files -
Create a new file
bl perrott
4 || Recent Files or
sim_gm_curves.py [Sehs:tﬁasﬁmmlmm]
Tip: You can also drag and drop files/tabs here.
Python c:\CppSim'SimRuns\Spice\spice_examplel + X
... running hspc ...
... running ngspice ...
|
FEREREEEEREAEEL Ngspice run has Completed FEEEEEEEEEEELAEESL
In [27]: data = NgspiceData('simrun.raw’)
| In [28]: data.lssig()
Qutl[28]: ['TIME', "in®, 'n@', 'm1", 'n2', "out', "i_vsup’]
In [29]: vin = data.evalsig{'in’)
In [3@]: vout = data.evalsig('out’)
In [31]: from pylab import = ‘
In [32]: plot(vout) E
Qut[32]: [<matplotlib.lines.Line2D at @x86c7h7e>] ‘
In [33]: -
Cursar pos 1:1 on h

Also, the resulting plot is shown below:

00 + - B@E

x=76208.7 y=0.441146

35

B. Running Parameter Sweeps using Python Scripting

We now consider an example of using a Python script to perform a parameter sweep by performing

multiple Ngspice simulations from the script

e As with the Matlab example in the previous section of this document, go to the cell
gm_on_id_test by clicking on its schematic from the schematic listbox menu in Sue2 as
indicated below. Note that you need to make sure that the library for the schematic listbox is
Spice as shown in the figure. You should see the schematic shown below, which contains a

diode-connected NMOS transistor fed by a current source.

SUE2: gm_on_Id_test (schematic) --- C/CppSim/CppSimShared/Suelib/Spice/gm_on_Id_test.sue

=10l x|

Eile Window Edit Tools Doc

BC:-100u
AC- 0

M1
W=W_Nnimos
1=0:13u
geo=0

and

Spice | &
bus_terminals_example
cces
gm_on_ld_test
hsp_exampled

inverter

spice_example

spice_example2

spice example3 b

CppSimModules

accum_and_dump =
accumulator

add2

and2

and3

ascii_store

bang_bang_detector

ch pump h

devices

flag =
global

inline_cmd

inout

input

name_net

name_net_s

output LI

e Now go to the simulation directory for the cell gm_on_Id_test by typing the following at the

Python prompt:

cd c:/CppSim/SimRuns/Spice/gm_on_Id_test

After typing ‘Is’ at the Python prompt, you should see sim_gm_curves.py as one of the files:

36

File
[+]
J

Filter:

Edit View Search Run Tools Window

=

File Browser g X

Help

All Supported Files -

[
N

perrott
Recent Files

Create a new file

or

’Select files from your computer]

Tip: You can also drag and drop files/tabs here.

Python

c:\CppSimSimRuns\Spice'gm_on_Id_test -

4

In [8]1: 1s

19/12/2013
10/12/2013
es/@1/2011
10/12/2013
es/@1/2011

In [9]:

:38 PH
138 PM
143 AM
105 AM
143 AM

<DIR>
<DIR>

3 File(s)
2 Dir(s)

Cursar pos -1 -1 [Pﬂhon

v]‘

In [7]: cd c:/CppSim/SimRuns/Spice/gm_on_Id_test
c:\CppSim\SimRuns\Spice\gm_on_Id_test

Volume in drive C has no label.
Volume Serial Mumber is 1C31-B5F@

Directory of c:\CppSim\SimRuns\Spicetgm_on_Id_test

660 sim_gm_curves.m
1,463 sim_gm_curves.py
1,446 test.hspc

3,569 bytes

60,659,810,304 bytes free

We can examine the sim_gm_curves.py script by typing at the Python prompt:

edit sim_gm_curves.py

The resulting editor window should appear as follows:

37

@ Editor - Canopy
I File Edit Wiew Search Run Tools Window Help
?HH_F‘“F oo 4 r '!} [b{[‘
File Browser =4 sim_gm_curves,py @ |
Filter: |All Supported Files - 16 "
5 17 & choose w_nmos values for parameter sweep
© perrott) 18 w_nmos_vals = arange(1,6,1)*1e-6
4 |, RecentFiles 19
sim_gm_curves.py 20 ¥ choose hspc sim file to modify
21 hspc_filename = "test.hspc’
22
23 ¥ create figure or clear existing one
24 h = figure(1)
25 h.clf()
26 color_vals = ['b",'g",'r",'m",'k"'] =
27
28 # perform multiple ngspice simulations and plot results
29 count = @
3@ for w_nmos in w_nmos_vals:
31 print 'w_nmos: ', w_nmos
32 hspc_set_param(w_nmos',w_nmos, hspc_filename)
33 ¥ when adding lines, must always start with ‘hspc_addline’
34 # followed by 'hspc_addline continued’ statements
35 hspc_addline('.param new_param = 1°,hspc_filename)
36 hspc_addline_continued(’.param new_param2 = 1@',hspc_filename)
37 hspc_addline_continued(".param new_param? = 15" ,hspc_filename) E
ll 38 ngsim(hspc_filename)
39
40 data = NgspiceData(simrun.raw’)
41
42 current = data.evalsig('CURRENT')}#*1e6;
43 mi_gm = data.evalsig{'mi_gm');
44 plot(current,ml_gm,color_vals[count])
45 count = count + 1
46 i
A7 # sdd grid and label plot axis
48 grid(True) 5
49 xlabel('Current (uA)')
5@ ylabel('gm of M1°)
51 h.show() N
I
Python c\CppSim\SimRuns\Spice'gm_on_Id_test = X I
In [8]1: 1s N
Volume in drive C has no label.
Volume Serial Number is 1C31-B5F@ E
Directory of c:\CppSim\SimRuns\Spice‘\gm_on_Id_test |
I Cursor pos 4: 10 lP)fthon hd 2 ch\CppSim\SimRuns\Spice\gm_on_Id_test\sim_gm_curves.py

Key commands seen in the above script include:

o ngsim(hspc_filename): runs Ngspice with the HSPC file indicated by
hspc_filename.

0 hspc_set_param(param_name, new_value, hspc_filename): this command searches
the HSPC file specified by hspc_filename for a parameter with name param_name
and changes its value to new_value. For the above example, we change parameter
w_nmos each time before running a new Ngpice simulation using the ngsim
command.

o0 hspc_addline(new_line,hspc_filename): this command adds a new line specified by
new_line to the file indicated by hspc_filename. For the above example, we simply
add the line .param new_param = 1 to the test.hspc file. This is not useful for this
example, but illustrates how the command is used.

38

o0 hspc_addline_continued(new_line,hspc_filename): this command adds additional
lines beyond the new line created by the hspc_addline command. As many such lines
can added as desired, but the first one must always be hspc_addline with the rest being
hspc_addline_continued. Again, the lines added in this example are not useful here,
but illustrate how the command is used.

e Run the sim_gm_curves.py script by typing at the Python prompt:
%run sim_gm_curves

You should see several Ngspice simulation windows pop up and the Python editor window
will appear as follows when the simulations have concluded:

@ Editor - Canopy B e o5 e S
File Edit VWiew Search Run Tools Window Help

?HH A | C ‘!’ D‘ £

File Browser g X sim_gmi_curves.py @ |

Filter: |All Supported Files - 16

17 # choose w_nmos values for parameter sweep

»

> perrott 18 w_nmos_vals = arange(1,6,1)%1e-6 E
4 || RecentFiles 19
SiM_gm_curves.py 20 & r~hnnes hene eim File #n modifi il
Python c:\CppSim\SimRuns\Spice\gm_on_Id_test = X
e raTTETy T opETee s
s
AEAEAAREAARAARE Ngﬁpice run has completed AAARREERREELELAAAR
w_nmos: 4e-@§
-» Changing parameter 'w_nmos' to walue "4e-@6' in file 'test.hspc’
-*» Adding line '.param new_param = 1" in file "test.hspc’
-» Adding line ".param new_param2 = 10’ in file 'test.hspc’
-*» Adding line '.param new_param3 = 15' in file 'test.hspc’
Running Ngspice on module gm_on_Id_test (Lib: Spice):
. netlisting ...
Spice netlisting of cell 'gm_on_Id_test' completed with no errors
. running hspc ...
. running ngspice ...
FEREREEEEEREARE NgSpiCE run has completed FEERREEEREEEERAL
| wW_nmos: 5e-@6
i -> Changing parameter 'w_nmos' to walue "5e-@6° in file 'test.hspc’
-» Adding line ".param new_param = 1" in file 'test.hspc’
-*» Adding line '.param new_param2 = 18' in file 'test.hspc’
-» Adding line ".param new_param3 = 15" in file 'test.hspc’
Running Ngspice on module gm_on_Id_test (Lib: Spice):
. netlisting ... £
Spice netlisting of cell 'gm_on_Id_test’' completed with no errors
. running hspc ...
. running ngspice ...
Y] Ngspice run has completed FREEEELAREAEREAE
In [11]: -
I Cursor pos 30: 27 lP)rthon hd 2 ch\CppSim\SimRuns\Spice\gm_on_Id_test\sim_gm_curves.py

39

o Further, the Python plot window will show the results of the 5 simulations as shown
below:

"OOC +:- B
! .:E!

More Details on CppSimView

In this section, we will examine more details related to using CppSimView to view simulation results
from NGspice. We will so by continuing the example from the previous section. As such, we will
assume that the starting point of CppSimView is as shown below.

40

-} CppSimView --- Library: Spice, Celk: spice_examplel - |E||5|
Save to .epsFile Save to .figFile Save to Clipboard Zoom - CppSimHome: c:/CppSim —

" testhspc sirnrun.ram * nodes plotsigl.) ' messages

_|5P”°h _|L°°"d FREQUENCY =]

inoise_spectium

Load and Replot |
Flat |
Reset Mode List |

Back | Farward | ﬂ

|| plotsiglx,'abs(inoise_spectrum).abs(onoise_spectrum)”'logx) ‘

CppSlm C++ Behavioral Simulation —— ‘Written by Michael Perrott (hitp:/fwww.cppsim.com)

A. Basic Plotting and Zoom Methods

We have already discussed how to load in signals from an NGspice simulation and choose a
logarithmic scaled x-axis as shown in the CppSimView plot window below. We will now provide
further details on forming plot expressions, which are also documented in the Hspice Toolbox for
Matlab manual (i.e., c:/CppSim/CppSimShared/Doc/hspice_toolbox.pdf) and zoom methods for
interactive viewing of plots.

e As described in the Hspice Toolbox for Matlab manual, the plotsig() function used in
CppSimView view supports mathematical operations in the plot expression. As an example,
consider modifying the expression in the above CppSimView window such that we compare an
individual noise spectrum to the addition of two spectra. To do so, we simply modify the
expression as shown below, and use a comma separator (i.e., ‘,’) to plot within the same subplot
(note that a semicolon separator (i.e., *;’) is used to generate separate subplots as shown below).
For future reference, note also the Zoom button circled below.

J CppSimView --- Library: Spice, Celk: spice_exa ngl-1 - | Ellﬂ

Save to .epsFile Save to figFile Save to Clipboa!’d Zoom .‘-CppSimHome: c:fCppSim --—-

 testhspc * & w® Sinrun raw * nodes " plotsigl.) ' messages

_Seh || Load || EREquEnCy =]

inoise_spectum

| onoise_spectium
Load and Freplot Onolse_Specirum
Plot |

Reset Node List |

Back | Fonward | LI

‘,'. pIDtsig[x'abs(inDise_spectrum+abs(Dnoise_spectrum)),abS(E*DnDise_spemrum):abs[DnDise_spedrum)','logxr_’, ‘
L L a8

- t.pbglh. T Behagioral Simdaione s s s s n = yRA L E;hﬁi;hfa;ﬁ:’errott {hitpa:fwvess. cppsimn.corn)

e Plotting of the above expression (by pushing the Plot or Load and Replot button in
CppSimView) yields the figure shown below.

41

-} Plot for CppSimView --- Library: Spice, Celk: spice_e

Fraquency (MHz)

Now click on the Zoom button (circled in the CppSimView window shown above) to bring up
zoom controls on the plot as shown below. Each of the zoom keys has a respective hot key
indicated by the parenthesis in each word. For instance, pressing z (upper or lowercase),
allows one to zoom into a subportion of the x-axis of the current plot. Exceptions to this rule
are the zoom In and Out buttons, whose hotkeys are the up and down arrow keys. Also, the
left and right pan keys, < and >, are hot-keyed to the left and right arrow keys.

0 Note that no Y zoom functions are currently implemented since they are generally
unnecessary since the Y-axis gets adjusted automatically during X-zoom operations.

42

=101 %]

10

Load and [RJeplat E)

e Press the m key to begin measuring a signal. Press the left mouse button repeatedly until you
are satisfied with the point selected. Then press the right mouse button to complete the
measurement.

e Press the d key to begin a difference measurement. Press the left mouse button repeatedly
until you are satisfied with the first point to be selected. Then press the right mouse button
repeatedly until you are satisfied with the second point to be selected. Press the left mouse
button to complete the measurement.

0 Note that you can combine the Measure and MeasDiff commands. First, perform a
measurement command by pressing the m key as described above. Upon completion
of this command, press the d key to begin a MeasDiff command. However, instead of
pressing the left button, press the right one. The first point will remain that selected by
the Measure command, and the second can now be set where desired. Press the left
mouse button to complete the MeasDiff operation. The advantage offered by this
option is that you can zoom into a particular part of the waveform and select an initial
point using the Measure command. You can then zoom into a different portion of the
waveform, and then left-click on MeasDiff to determine the difference from the last
point to a new point in the current zoom location by using this technique.

e Press the | key (i.e. lowercase L) to display the actual sample values from the simulation (as
indicated by circles). Press the | key again to return to solid lines for the plot.

e Press the p key to return to the previous zoom value (i.e., the last achieved through use of the
Zoom X button). Note that if you just used the Zoom X function without doing any other
zoom or pan operations, you will see no change in the plot.

e Press the Zoom button again on the CppSimView main window (as circled in the figure
above) to remove the zoom buttons from the plot window.

D. Advanced Plotting Methods

43

e There are actually five ways to perform plotting with CppSimView.

0 The first is to left-click on the Plot button once an expression is entered into the bottom
command line (as demonstrated above).

0 The second is to double-click on a node in the listbox as covered in previous sections
of this document. The plot expression currently selected on the plot radio button (i.e.,
plotsig(...) in the figure below) will then be filled with the selected node, and
additional subplots are created as you continue to double-click on signals. To reset the
number of subplots to one, press the Reset Node List button — it then turns back to
Plot and additional double-clicks on signals start the process over.

0 The third is to enter a plot expression directly into the command line and then press the
Enter key to produce the corresponding plot. One can also modify an existing
expression created, for instance, by the second method. The latter method often proves
convenient — simply double-click on the desired signals to produce various subplots,
and then modify the resulting command line expression to implement functions on the
various signals or to position them on the same subplot (using a comma separator
rather than a semicolon).

0 The fourth is to enter a plot expression in the command line, but insert # characters into
the expression where you would like to have signal names. Once you have completed
the expression, double-click on node names and observe that the # characters are
substituted from left to right with the signal names. Once the last # character has been
filled in, a plot of the expression will be produced. Note that it is useful to click on the
Reset Node List button first to clear the plot expression.

-} CppSimView --- Library: Spice, Celk: spice_examplel - | Ellﬂ
Save to .epsFile Save to .fig File | Save to Clipboard Zoom - CppSimHome: c:fCppSim --—

" tasthspo sirnrun.raw % nodes plotsigf.) ' messages

_Smeh || Load || EREqUENCY =]

inoise_spectrum

Load and Feglat | onoise_s
Plat |
Fezet Mode List |

Back | Folwaldl ﬂ

P . TSR .
.
» P v

CppSlm C++ Behavioral Simulation —— ‘Written by Michael Perrott (hitp:/fwww.cppsim.com)

3 ‘
s®

o The fifth method is to use the Back and Forward buttons to scroll through a history of
previous plotting expressions. Once a desired plotting expression is encountered, left-
click on the Plot button to replot it or perform alterations of the expression in the
command line as desired and then press the Enter key. Note that the history
commands are specific to the selected simulation file and output file (i.e., test.hspc and
simrun.raw, for example, in the figure below). The history keeps track of the last 400
commands used on a given cellview (i.e., for spice_examplel, as an example), and it is
shared among the various simulation and output files for that cellview.

E. Saving Plots to EPS files, FIG files, or the Windows Clipboard

44

e To save plots to an eps file, fig file, or to the clipboard, press either Save to .eps File, Save to
.fig File, or Save to Clipboard, respectively, in the CppSimView main window. When saving
to the clipboard, the plots can then be pasted into other Windows applications such as Word or
PowerPoint.

J CppSirticm - - Jilrurys Spice, C A rpfze_examplel = |EI|1|

" ®cave to .epsFile Save to .figFile Save to Clipboard ~ 2bem - CppSimHome: c:/CppSim —
L

*
n [testhenc, gmns® ** O Simrun.raw & nodes " plotsigl.) " messages

"tagy LN | RN
SR | Load] [FREQUENCY =]

Load and Fleplotl onoise_spectrum
Plot |
Fieset Mode List |

Back | Forward | LI

“ plotsigix.'abs(inoise_spectum)+abs(onoise_spectrum).absiinoise_spectrum)’ ‘

Witten by Michael Perrott (hitp: /s cppsim.com)

CppSim: C++ Behavioral Simulation

More Details on Sue?

Sue2 provides a convenient graphical interface for creating and modifying circuit schematics, and is

designed to have many similarities to professional schematic captures tools such as Cadence

Composer so that IC designers can easily alternate between these tools as they iteratively perform

system and circuit level design. A more complete manual is available for Sue2 as the PDF document:
e C:/CppSim/CppSimShared/Doc/sue_manual.pdf

but we will cover enough of its operation here for users to get a good feel of this package.

Before we begin, there are two important things to keep in mind when you use Sue2:

e Always pay attention to the Help Message Window, which is to the right of the menu at the
top of the main canvas, during command operations — it provides information for bindkeys
activated while a given command is in effect

e To break out of any given command mode, hit the Esc key. This is very important to
remember — if Sue2 ever seems to lock up, hit the Esc key! (The other reason Sue2 may

appear to lock up is if an entry form was opened but not completed — in such case, be sure to
find the entry form among the Windows applications and close it to continue with Sue?2).

A. Using Navigation and Edit Commands

Sue2 allows its bind-keys to be changed according to user preference by editing of the file
c:/CppSim/Sue2/.suerc. That being said, the default values of common navigation and edit bind-keys
are listed here.

e Sue2 navigation commands:

45

O 00O

@]

o
(0}

(0]

(0]

(0]

f — fit view to the window size

z-zoom in

Z —zoom out

Zooming can also be accomplished by pressing the right mouse button and dragging
the mouse over the region to be zoomed into

Panning is done by either hitting the arrow keys or by holding the Ctrl key and then
dragging the mouse while the left mouse button is held down.

e - descend into hierarchy of selected cell.

Ctrl+e — Return to higher level of hierarchy.

Sue?2 editing commands:

Modify the parameters of a cell within a schematic by double-clicking on the cell. A
listbox will appear that displays the cell parameters and allows their modification.
Move cells by pressing and holding the left mouse button on the desired cell and then
dragging the mouse.

Select multiple items by holding the left mouse button and dragging the mouse over the
items to be selected. Additional items can be added to the current selection by holding
the shift key and then progressively clicking the left mouse button on the items of
interest.

B. Creating a New Schematic

Let us now walk through an example to see how to create a new Sue2 schematic. Note that this will be
done in the context of creating a CppSim simulation, but the ideas carry directly over to NGspice.
There is no need to understand how CppSim works for this example.

For our example, we will create a pseudo-random bit stream (PRBS), pass it into a lowpass filter, and
then view the results both as time domain signals and in the form of an eye diagram.

= We will first create a new library called PRBS_Examples

(0}

SUE2: linear_cdr (s~'m m 7)) --- C:/CppSim/CppSimShared/Suelib/CDR_Examples/linear_cdr.sue
File Window E8it Tools | Boc |

In Sue2, click on the Library Manager menu item under the Tools menu bar item as
shown in the figure below.

=10]

L|_brary Manager _ bang_bang_cdr
enable_2or
linear_cdr

linear_cdr_with_decimation

CppSim Simulation

VppSim Simulation

NGspice Simulation

-

CppSimModules

Create spice netlist

accum_and_dum
Create spice netlist (with top sub) -and_dume

accumulator
add2

andz2

and3
ascii_store

-

-

devices

flag

global
inline_cmd
inout

input
name_net

-

CDR_Exammesl;l

46

e Inthe Library Manager window that appears, click on Create Library as shown below.

I=
Closel Import Library Tool | Export Library Tool |
'sue lib' Operations: Add Library | Remove Libraryl schematic win. | icont win. | icon2 win.

. L]
Library Operations: ’. Create j Rename | Dependencies | Delete |

Module Operations: Move | Dependencies | Delete |
Library: Module: |overall_sd_synth_two_point_mod -
CppSimModules sd_synth
evices sd_synth_electrical
CDR_Examples sd_synth_fast
DLL_Examples sd_synth_fast_simulink
Electrical_Examples sd_synth_tristate
GMSK_Example |~ | sd_synth_tristate_fast -
1| ol Al y
Result: - |

—— NOTE: YOU WILL NEED TO RESTART SUEZ2 ONCE YOU ARE -——
— FINISHED WITH LIBRARY MANAGER OPERATIONS ——

7 I

e Choose the new library name as PRBS_Examples and then press OK.

i8]

Cancel | OK |

Library Name: |PRBS_Examples

e You should see a confirmation window in the CppSim Library Manager window as show
below. You should then Close this window.

47

10l x|

Close | Import Library Tool | Export Library Tool |
'sue.lib' Operations: Add Library | Remove Library | schematic win. | icon1 win. | iconz2 win.
Library Operations: Create | Rename | Dependencies | Delete |
Module Operations: Move | Dependencies | Delete |
(M TE=Ty" Synthesizer Examples Module: |overall_sd_synth_two_point_mod -~
CppSimModules sd_synth
devices sd_synth_electrical
CDR_Examples sd_synth_fast
DLL_Examples sd_synth_fast_simulink
Electrical_Examples sd_synth_tristate
GMSK_Example ~| sd_synth_tristate_fast -
i 2l A ;
Result =

-— Creating New Library 'PRBS_Examples' —

===+ Private library 'PRBS_Examples' successfully created **=**

I 2l

= In Sue2, create a new schematic cell as follows:

o Select File -> New Schematic as shown below.

SUE2: linear_dll (schematic) --- C:fCppSim/CppSimSharedfSuelib/DLL_Examples/linear_dll.sue — 3 x|

SgmEEEEN DLL_ExampIeslil
1 bang_bang_dll

"W json = ® linear_dll
Load
Save
Save as

Raise Windows Cirl-r =

Create eps file Cirl-p CppSimModules
accum_and_dump [
accumulator

add2

andz2

and3

ascii_store

bang_bang_detector

ch_pump =

Exit Ctrid

devices
flag =
global
inline_cmd
inout
input
name_net
name_net_s

output x|

o0 A New Schematic window opens as shown below. Within the Save in: section, select
the current path to be c:/CppSim/SueLib. You should see the PRBS_Examples
directory as shown in the figure below.

48

| Newschematic x|
P ;l':a T @

. z:vei_n:| || Suelib
[l

N SsssssssssssssssEns®® | -] Date modified
g . PRES_Examples

|=[_Type
11/10/2011 1Z:01PM File folder

Recent Places

[

Desktop

Libraries

A
Computer

-
Network

1| |
File name: IUntitIed j Save
ISue Files {*.sue) j Cancel

Save az type:

o Click on the PRBS _Examples folder icon, and then specify the File name as

prbs_test_example as circled below. Left-click on the Save button, as also circled
below, to complete the creation of the new schematic. You should now see the top
banner of the schematic window state that the new schematic is
C:/CppSim/SueLib/PRBS_Examples/prbs_test_example.sue. In case this point is
not clear, please view the schematic window shown as a figure on the next page in this
document to see how this information is displayed.

zl
Savei_n:l || PRES_Eamples j G ? - '

| +| Date modified || Type |-
Ma items match your search.

E Mame =

Recent Places

L4

Desktop

Libraries

Ly
Computer

-
Metwork

1]

T

Y Rl "

. *
File name: [Iprbs_test_rnple :

=] 8 [see

Save as type: Algl.% [T NS v

=] TTraast

X3

In the Sue2 iconsl listbox, as shown below, select the signal_source icon and then move the
cursor into the main Sue2 schematic window. Click on the mouse to place the icon at an
appropriate place. Then select the rcfilter icon, as circled below, and again move the mouse
into the main Sue2 schematic window to place this icon to the right of signal_source cell.

49

Finally, select the constant icon from the iconsl listbox (you must use the scroll button to see
this icon name) and then place it to the left of the signal_source cell. The main Sue2
schematic window should now appear similar to the figure displayed below.

SUE2: prbs_test_example (schematic) --- C:/CppSim/Suelib/PRBS_Examples/prbs_test_exa e.sue -10] x|
File Window Edit Tools ro| ‘

= DLL_Examples l_l
bang_bang_dll
linear_dll

opl EEEENN Gpgsw_mrv1odules|
refilter : |

Yw gyt g mmn®
reg_integer
regen_latch
rictank
sample_delay
sampler |

[]

- lm_I_ln‘!d!IaoF LN ",

signal_source 'j

.
as
"Emmmmas dewces|

flag

global
inline_cmd
inout
input
name_net
name_net_s
- | output
SUEZ: prbs_test_example (schematic) ** MODIFIED ** --- C/CppSim/Suelib/PRBS_Examples/prbs_t: =10 ﬂ
File Window Edit Tools Doc | ‘
DLL?ExampIesl_l
bang_bang_dll
lingar_dil
in out E
wcilter CppS\rnI'v1oduIes|
ch_pump d
fo= clipper _

clocked_ascii_store
clocked_delay

constant

a=() constant_interp

counter
cpp_internal_double_to_int_co
cpp_internal_int_to_double_co - |

dewces|

flag

global
inline_cmd
inout

input
name_net
name_net_s
output

= Save the schematic view by clicking on File->Save (or hold the Ctrl key and then press the s
key). If you now click on the top portion of the schematics listbox, as circled below, you’ll
notice that the library PRBS_Examples does not show up.

50

SUE2: prbs_test_example (schematic) --- G/CppSim/Suelib/PRBS_Examples/prbs_t

select

Eile Window Edit Tools Doc |

xil %0
signal_source

mn
phase

out

rcfilter

Signal: 0
fo=

library

=10x|

DLL_Examples

S DA A B

C:/CppSim/CppSimShared/S
C:/CppSim/CppSimShared/S
C:/CppSim/CppSimShared/S
C:/CppSim/CppSimShared/S
C:/CppSim/CppSimShared/S
C:/CppSim/CppSimShared/S
C:/CppSim/CppSimShared/S
C:/CppSim/CppSimShared/S

cpper

clocked_ascii_store J
clocked_delay

constant

constant_interp

counter
cpp_internal_double_to_int_co
cpp_internal_int_to_double_co «

deuices|
flag =
global
inline_cmd
inout
input
name_net
name_nei_s
output

The issue of PRBS_Examples not showing up as a library in Sue2 occurred since there were
previously no cells in this library. Now that you have created a cell for this library, you can
correct this issue by exiting Sue2 and then restarting it again. After doing so, you should then

click on the top portion of the schematics listbox.
PRBS_Examples, which should be selected.

prbs_test_examples to re-obtain the same schematic shown above.

SUE2: prbs_test_example (schematic) -—- CfCppSim/Suelib/PRBS_Examples/prbs_test_exa

Now the set of libraries will include
You should then choose schematic

File Window Edit Tools Qot\

il xi0
signal_source

n out

phase

rcfilter
Signal: 0:s chte

fo=
PRBS Data: 3:square

-|0O] x|
PRBS_Examples |_|
pros_test_example
CppSimModules
accum_and_dump =1
accumulator ||
add2
and2
and3
ascii_store j
devices
flag =
global
inline_cmd
inout
input i
name_net ﬂ

Select parameter values for each of the cells in the above

each of them and setting them as follows:
o constant cell: consval =0.0
o signal_source cell: stype = 3, freq = prbs_freq
o rcfilter cell: fo = 300e6

o1

schematic by double-clicking on

SUE2: prbs_test_example (schematic) ** MODIFIED ** - C/CppSim/Suelib/PRBS_Examples/prbs_t: N =] |
Eile Window Edit Tools Doc | |

F'REIS_Examp\esl;l
pros_test_example

xil xil0
signal_source

n out
=

phase

refilter CppSimModules
fo=300e6 accum_and_dump =
PRBS Dat: are, 4:i accumulator
add2
and2
and3
ascii_store

Signal: O:square, 1:s

-

devices

flag =
global

inline_cmd
inout

input
name_net

L

= To connect the cells, we need to add wires. You enter wire-create mode by typing w in the
main Sue2 schematic window. To start a wire, left-click at the desired starting point (usually
at the terminal of a cell). Place the cursor at the end of the desired wire segment, and then left-
click to create a new segment. A wire is completed when it is connected to a cell or pin
terminal, though double-clicking the left mouse button (or single-clicking the right mouse
button) will force the end of a wire at any point in the schematic. Note that you must push the
Esc key to end wire mode. Given this information, complete wiring for the schematic as
shown below.

SUE2: prbs_test_example (schematic) ** MODIFIED ** --- C:/CppSim/Suelib/PRBS_Examples/prbs_t =10l =|

Elle Window Edit Tools Doc | |

PRBS_Examplesl;l
prbs_test_example

xil xi0

signal_source

1 in out 3

phase out =l
Signal: 0:s sine, 2imp reflter CppSimModules
} 26 accum_and_dump =
PRBS Data: 3:square, 4:imp C accumulator i

add2

and2

and3
ascii_store =
devices
flag =

global

inline_cmd

inout
input b
name_net ﬂ

= To probe signals produced in the CppSim simulation of the schematic, we need to label all
signals of interest. We also should add pins to any nodes that we might want to bring up to the
next level of hierarchy.

o For this example, let us label the output node of the signal_source cell as sig. To do
so, click on name_net of the icons2 listbox (as circled below), move the mouse cursor
into the main schematic window, and then place the name_net icon on the wire
connected to terminal out of signal_source. Double-click on the name_net icon once
it is placed, and set its name to sig. The schematic figure below illustrates how the

52

name_net icon should look within the schematic once these operations are completed.
Note that you can also use the name_net_s icon instead of name_net to name nodes —
the only difference between them is their appearance.

SUE2: prbs_test_example (schematic) ** MODIFIED ** - C/CppSim/Suelib/PRBS_Examples/prbs_t: O] x|

File Window Edit Tools Doc [selected: name_net RO sig #1204 |

PRBS_Exampleslﬁ
prbs_test_example

xil xi0
signal_source
ST in out

phase [
Signal: 0:square, 1:sine, 2:imp refiter CopSimModules
fo=300e6 accum_and_dump =
PRBS Data: 3:square, 45imp accumulater I

clk add2

andz2

and3

ascii_store
|..___|..__ hd

devices

inline_cmd -~
inout

igoutm m mm gy »

name_net

o mcmon m ® ®

output oy

0 Add an output pin to the schematic by clicking on output in the icons2 listbox (as
circled above), moving the mouse cursor into the main schematic window, and then
placing the pin at the output of the rightmost wire in the schematic as shown below.
Once the output pin has been placed, double-click on it to change its name to out. Be
sure to save the schematic at the completion of these operations.

SUE2: prbs_test_example (schematic) ** MODIFIED ** --- CfCppSim/Suelib/PRES_Examples/prbs_t - |EI|1|

Eile Window Edit Tools Doc [selected: output RO out #1218 |

PRBS_Examples l;l
pros_test example

i . il
signal_source)

phase in out I
rcfilter

CppSimModules
f0=300e6 accum_and_dump =

PRBS Data: 3:si e, 4i accumulator

add2

and?

and3

ascii_store

Signal: 0:squ

-

devices
inline_cmd I
inout
input
name_net
FE W G E N »
output

Sapppmns’®

C. Creating an Icon View (And Associated Parameters) For A Given Schematic

= Assuming you are currently in the schematic shown above, creation of an associated icon is
straightforward. Simply click on Window->make icon, or press its associated bindkey, K.
The resulting icon view should appear as shown below. Be sure to click on File->Save to save
this new icon view.

53

SUE2: prbs_test_example (icon) ** MODIFIED ** - C/CppSim/Suelib/PRBS_Examples/prbs_test e =10 x|

Eile Window Edit Tools Doc | |

F'REIS_Examp\esl;l
pros_test_example

$name
prbs_test_example

-

out CppSimModules

accum_and_dump =
accumulator
example_param=%example_param 2002

and2

and3

ascii_store

-

devices

-type user -name name -default x
inline_cmd -

-type user -name example_param -default 1.0 inout

input
name_net
name_net s
output =

= The newly created icon view is intended to be a template for the actual icon view desired. We
will now change its default parameter, example_param, and explain how to alter its rectangle
box.

0 The two statements involving example_param are intended as a template for creating
parameters, and should either be removed or modified to reflect a parameter name of
interest. The top statement specifies how the parameter and its value will be displayed
when the icon is instantiated within a schematic. The bottom statement declares the
parameter and provides its default value.

In this case, our schematic has one parameter, prbs_freq, that we would like to
implement. To do so, double click on the two statements involved example_param
(one at a time), and replace example_param with prbs_freq. Select the default value
of prbs_freq to be 1e9, and add units of Hz to the top statement. Hit the Enter key
each time you complete the changes for a given statement. The figure below indicates
how the icon view should look upon the completion of these changes.

SUEZ: prbs_test_example (icon) ** MODIFIED ** --- C:/CppSim/Suelib/PRBS_Examples/prbs_test_e; =10l =|

Elle Window Edit Tools Doc | |
PRBS_Examplesl;l
prbs_test_example

$Sname
prbs_test_example

=

CppSimModules

accum_and_dump I
lat

prbs_freq=Sprbs_freq e e

and2

and3

ascii_store

-

devices

-type user -name name -default x

inline_cmd -

-type user -name prbs_freq -default 1e9 inout

input
name_net
name_net_s
output

L]

54

0 To add more parameters, you would simply add more statements in similar fashion to
the two you just modified. Statements can be added by either copying a current
statement (click-left on a statement of interest to select it, press c, left-click again, then
left-click once more to place the copy) and then modifying the copy, or by clicking on
Edit->add text (bindkey is t) and directly entering a new text statement.

0 To change the size of the icon rectangle (i.e., the green rectangle shown in the above
icon view), double-click on the rectangle and solid boxes will appear at its corners.
Left-click on one of the corner boxes and then move the mouse — the associated corner
of the rectangle will change in accordance with the mouse movements. Release the left
mouse key to retain the current position of the given rectangle corner.

= You have several options for creating shapes for icons in Sue2:

0 Create a line by pushing the I (as in line) key followed by the left mouse button, and
then double-clicking on the left mouse button (or single-clicking the right mouse
button) at a different point on the canvas. Multi-segment lines are created by single
rather than double-clicking on the left mouse button at each desired breakpoint of the
line, with a double-click of the left mouse button (or single-click of the right mouse
button) to end the line. Press the shift key to limit the drawing of line segments to
either the vertical or the horizontal plane. Once a line is created, its various line
segments can be modified by first double-clicking on the line, and then pressing and
holding the left mouse button over the given breakpoint followed by dragging of the
mouse to the new desired location.

o Create an arc by pressing the a button followed by pressing (not holding) the left
mouse button, moving the mouse until the appropriate size and shape for the arc is
achieved, and then pressing the left mouse button.

0 As mentioned above, create text by pushing the t key followed by the left mouse button
at the desired location for the text. Modify text by double-clicking on it with the left
mouse button and then performing edits. Only three sizes of text are available — the
size of the given text segment may be varied while in text mode by holding the Shift
key and then pressing either the left, middle or right mouse button to select the desired
size. Also, the text can be changed to either left, middle or right justified by holding
the Ctrl key then pressing either the left, middle or right mouse button.

= Save the icon view after you have completed the desired changes. The icon is ready to add to

other schematics, and can be accessed in one of the icons listboxes by selecting
PRBS_Examples as the library for a given icons listbox.

55

