ECE 209 — Exam # 1

Estimated time for completion: $<\!\!1.25$ hour 3 October 2019

Rules of the Exam

Rule 1: The examination period begins at 9:30am on Thursday, 3 October 2019, and ends at 10:45am on Thursday, 3 October 2019.

Rule 2: There are four problems, plus a bonus problem.

Rule 3: The exam is closed book and closed notes. You may use an 8.5" x 11" sheet of paper with notes and a calculator.

Rule 4: Do not leave the room until you have completed the exam.

Rule 5: To receive full credit for an answer, include the units along with the numerical answer.

Rule 6: <u>Show all work</u> - answers without supporting work will not receive credit.

Name

Problem 1 (20 points). The voltage and current at the terminals of the circuit element below are zero for t < 0. For $t \ge 0$ they are:

$$v(t) = 75 - 75e^{-1000t} V$$

 $i(t) = 50e^{-1000t} mA$
+ $v(t)$ -
 $i(t)$ • 1 2 •

and

Part A: Find the maximum value of the power delivered to the circuit.

Part B: Find the total energy delivered to the circuit element.

Problem 2 (20 points). Consider the circuit below:

If $v_a = 0.5 V$, is the interconnection valid (yes/no)?

If the interconnection is valid, identify the voltage and current sources that generate power by circling them in the figure above.

If the circuit is not valid, explain why.

Problem 3 (30 points)

Consider the three series and parallel resistor combinations below:

For circuits (A), (B), and (C) calculate R_{ab} , the equivalent resistance between terminals A and B:

 R_{ab} for circuit (A): _____

 R_{ab} for circuit (B): _____

 R_{ab} for circuit (C): _____

Problem 4 (30 points). In the circuit shown below, calculate the power associated with each circuit component, the total power generated, and the total power dissipated (or absorbed).

Power associated with the 15 V independent source? ______ Power associated with the $5v_x$ V dependent source? ______ Power associated with the 2Ω resistor? ______ Power associated with the 10Ω resistor? ______ Power associated with the 20Ω resistor? ______ Power associated with the 33Ω resistor? ______ Power associated with the 40Ω resistor? ______ How much power is generated in the circuit? ______ How much power is dissipated or absorbed in the circuit? ______

Bonus Problem (5 points)

Consider the two circuits below. Assume all components are ideal.

Is the absolute value of the voltage across the 20 k Ω resistor in "Circuit A" greater than, less than, or equal to that across the 20 k Ω resistor in "Circuit B?"

(Blank Page)

(Blank Page)