ECE 209 - Exam \# 3

Estimated time for completion: <1.25 hour
21 November 2017

Rules of the Exam

Rule 1: The examination begins at 9:30am on Tuesday 21 November 2017 and ends at 10:45pm on Tuesday 21 November 2017.

Rule 2: There are three problems.
Rule 3: The exam is closed book and closed notes. You may use an 8.5 " x 11 " sheet of paper with notes and a calculator.

Rule 4: Do not leave the room until you have completed the exam.
Rule 5: To receive full credit for an answer include the units along with the numerical answer.
Rule 6: Show all work - answers without supporting work will not receive credit.

Name

Problem 1 (30 points)

In the circuit below, the switch has been open for a very long time, and closes at $t=0$.

What is the time constant of the circuit for $t>0$? \qquad

Complete the table below:

	$\mathbf{t}=\mathbf{0}^{-}$	$\mathbf{t}=\mathbf{0}^{+}$	$\mathbf{t}=\mathbf{1 0} \mathbf{m s}$	$\mathbf{t}=\boldsymbol{\infty}$
i_{1}				
i_{2}				
i_{3}				
v_{S}				

Problem 2 (40 points)

Part A: Consider the voltage waveform shown below:

What is $\mathrm{V}_{\mathrm{RMS}}$?

What is the peak-to-peak voltage? \qquad

What is the frequency in Hz ?

What is the equation for $v(t)$?

What is \mathbf{V} the Phasor representation of $v(t)$ \qquad

Problem 3 (30 points)

Perform the following operations. Express your result in either rectangular (Cartesian) or polar notation.

$$
\begin{aligned}
& 2 \angle 60^{\circ}-4 j= \\
& \left(4 \angle 40^{\circ} \times 2 \angle 40^{\circ}\right)+(8+j 8)=
\end{aligned}
$$

\qquad

Convert the circuit on the left to the frequency domain when the frequency is 1 kHz .

What is the equivalent impedance between terminals \mathbf{A} and \mathbf{B} ? \qquad
(Blank Page)
(Blank Page)

