ECE 209 — Exam # 1

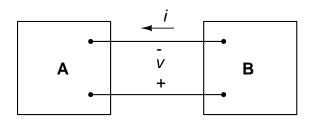
Estimated time for completion: <1.25 hour 28 September 2017

<u>Rules of the Exam</u>

Rule 1: The examination period begins at 9:30am on Thursday 28 September 2017 and ends at 10:45pm on Thursday 28 September 2017.

Rule 2: There are four problems.

Rule 3: The exam is closed book and closed notes. You may have an 8.5" x 11" sheet of paper with notes and a calculator.

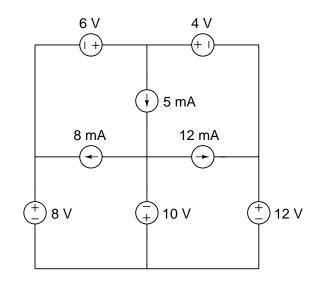

Rule 4: To receive full credit for an answer include the units along with the numerical answer.

Rule 5: <u>Show all work</u> - answers without supporting work will not receive credit.

Name

Problem 1 (20 points)

Two electric circuits, represented by boxes \mathbf{A} and \mathbf{B} , are connected as shown in the figure below. The reference direction for the current i and the reference polarity of the voltage v are also shown.

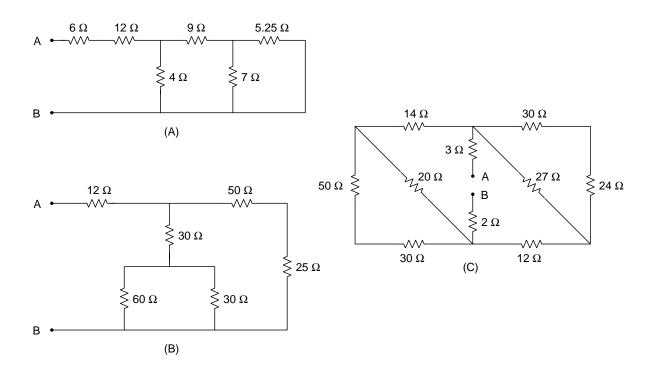


For each set of values of i and v in the table below, calculate the value of the power associated with circuit **A** and circuit **B**.

Condition	i	v	Power for Circuit \mathbf{A}	Power for Circuit \mathbf{B}
1	-10 A	5 V		
2	5 A	2 V		
3	12 A	-2 V		

Problem 2 (20 points)

Consider the circuit below:

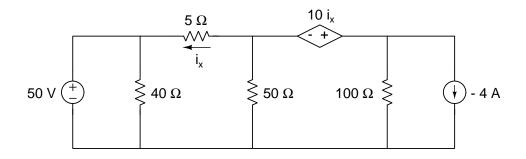

Is the interconnection valid (yes/no)? _____

If the interconnection is valid, identify the voltage and current sources that generate power by circling them in the figure above.

If the circuit is not valid, explain why:

Consider the three series and parallel resistor combinations below:

For circuits (A), (B), and (C) calculate R_{ab} , the equivalent resistance between terminals A and B:


 R_{ab} for circuit (A): _____

 R_{ab} for circuit (B): _____

 R_{ab} for circuit (C): _____

Problem 4 (30 points)

In the circuit shown below, calculate the power associated with each circuit component, the total power generated and the total power dissipated (or absorbed).

Power associated with the 50 V independent source?
Power associated with the -4 A independent source?
Power associated with the $10i_x$ dependent voltage source?
Power associated with the 40Ω resistor?
Power associated with the 5 Ω resistor?
Power associated with the 50 Ω resistor?
Power associated with the 100Ω resistor?
How much power is generated in the circuit?
How much power is dissipated or absorbed in the circuit?

(Blank Page)

(Blank Page)