ECE 209 — Exam # 3

Estimated time for completion: <75 minutes 22 November 2016

Rules of the Exam

Rule 1: The examination period begins at 11:00pm on Tuesday 24 November 2015 and ends at 12:15pm on Tuesday 24 November 2015.

Rule 2: There are three problems.

Rule 3: Show all work and state all assumptions. Make sure to include the units along with a numerical answer. Answers without support when needed will not receive credit.

Rule 4: The exam is closed book and closed notes. You may have an 8.5" x 11" sheet of paper with notes. You may use a calculator.

Answer Key

Happy Thanksgiving!

Problem 1 (20 points)

In the circuit below, the switch has been closed for a very long time and opens at t = 0. There is no energy stored in the circuit at the time the switch opens.

What is
$$i_2(0^-)$$
 \bigcirc \bigcirc \bigcirc

What is
$$i_2(0^+)$$
 \bigcirc \bigcirc \bigcirc

What is the differential equation that describes the behavior of $i_2(t)$ for $t \ge 0$? (Note: you do not need to solve the equation.)

$$10\dot{l}_2 + 0.2\frac{d\dot{l}_2}{dt} + 0.5\frac{d\dot{l}_5}{dt} = 0$$

Problem 2 (40 points)

In the circuit below, the switch has been open for a very long time and closes at t=0.

RTh seen by capacitor: 60/1/2/140+12 = 201

What is the time constant of the circuit for t > 0? 1 m S

Complete the table below:

See Page 6

1	$t = 0^{-}$	$t = 0^{+}$	t = 4 ms	$t = \infty$
i_1	OA	4.5 A	2.54A	2.5A
i_2	0 A	-3.0 A	-0.055 A	- 0 A
i_3	1.5 A	0.9 A	0.507 A	0.5A
v_C	90 V	90 V	31.1 V	30-V

$$\tilde{L}_1 = 2.5 + [4.5 - 2.5]e^{-4} = 2.54A$$
 $\tilde{L}_3 (4ms) = 0.5 + [0.9 - 0.5]e^{-4} = 0.507A$
 $\tilde{L}_2 (4ms) = -3e^{-4} = -0.055A$ $\tilde{V}_2 (4ms) = 30 + 60e^{-4} = 31.1V$

Problem 3 (40 points)

Part A. For the circuit below the voltage source $v_s(t) = 150\cos(2513t - 55^{\circ})$ V

150V What is the peak voltage across the resistor?

What is $v_S(4\text{ms})$?

-141,77 V

What is $i_S(4\text{ms})$?

-141,77 mA

What is the frequency of $V_R(t)$ in Hz?

400 1/2

What is the average power dissipated by the resistor?

11.25 W

Part B. What is the Phasor representation of the following time-domain signals?

$$v(t) = 120\cos(360t - 37^{\circ}) \text{ mV}$$

$$i(t) = 75\sin(450t + 40^\circ) \text{ A}$$

Part C. What is the time-domain representation of the following Phasor signals when the frequency is 3 MHz?

$$V = 25 \angle -50^{\circ} V$$

Part D. Convert the circuit below on the left to the frequency domain when the frequency is 2.5 kHz.

At what radian frequency, ω , is the impedance Z_{AB} purely resistive? 456 rad/S

$$\frac{2}{AB} = \frac{-j}{wc} + R || jwL$$

$$= \frac{-j}{wc} + \frac{jwLR}{R+jwL} \frac{R-jwL}{R-jwL}$$

$$= \frac{-j}{wc} + \frac{jwLR^2 + w^2L^2R}{R^2 + w^2L^2}$$
For $\frac{2}{3}$ to be purely resistive: $\frac{-j}{wc} + \frac{jwLR^2}{R^2 + w^2L^2} = 0$

$$w^2(LCR^2 - R^2 - w^2L^2 = 0)$$

$$w^2(LCR^2 - L^2) = R^2$$

$$w^2 = \frac{R^2}{(LCR^2 - L^2)}$$

$$w = \frac{R}{\sqrt{LCR^2 - L^2}}$$

Name: _____

KCL QV:
$$\frac{V-150}{40} + \frac{V}{12} + \frac{V}{60} + \frac{V-90}{12} = 0$$

$$\hat{L}_2 = \frac{V-90}{12}$$

Name:					
-------	--	--	--	--	--